In this work we present a detailed surface science characterization of L-arginine adsorption on the Cu(1 1 0) surface in a submonolayer regime. Arginine (ARG) is one of the main components of the tripeptide RGD (arginine-glycine-aspartic acid) commonly used as a linker/binder when engineering biomedical devices such as integrin receptors. We replaced the traditional Knusden cell sublimation method to obtain molecular films by dosing arginine directly from an aqueous solution through an electrospray ionization device (ESI). X-ray Photoelectron Spectroscopy (XPS) evidenced the co-existence of different adsorbed molecular species. In addition, Scanning Tunneling Microscopy (STM) data show that the arginine molecules form short and well-separated lines, constituted of dimers of molecules on the surface. Density Functional Theory (DFT) calculations helped clarifying these experimental findings, bringing strong evidences that ARG molecules adsorb in an ionic and a neutral form, with varied binding modes between N atoms and Cu atoms from the surface. These different N[sbnd]Cu bonds lead to the establishment of intermolecular H-bonds, responsible for the dimerization process.

Binding and 2D organization of arginine on Cu(1 1 0)

Totani Roberta;
2020

Abstract

In this work we present a detailed surface science characterization of L-arginine adsorption on the Cu(1 1 0) surface in a submonolayer regime. Arginine (ARG) is one of the main components of the tripeptide RGD (arginine-glycine-aspartic acid) commonly used as a linker/binder when engineering biomedical devices such as integrin receptors. We replaced the traditional Knusden cell sublimation method to obtain molecular films by dosing arginine directly from an aqueous solution through an electrospray ionization device (ESI). X-ray Photoelectron Spectroscopy (XPS) evidenced the co-existence of different adsorbed molecular species. In addition, Scanning Tunneling Microscopy (STM) data show that the arginine molecules form short and well-separated lines, constituted of dimers of molecules on the surface. Density Functional Theory (DFT) calculations helped clarifying these experimental findings, bringing strong evidences that ARG molecules adsorb in an ionic and a neutral form, with varied binding modes between N atoms and Cu atoms from the surface. These different N[sbnd]Cu bonds lead to the establishment of intermolecular H-bonds, responsible for the dimerization process.
2020
Amino acids
Arginine
DFT
Electrospray
Metal surfaces
STM
UHV
XPS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact