In this paper we introduce a mathematical model of concrete carbonation Portland cement specimens. The main novelty of this work is to describe the intermediate chemical reactions, occurring in the carbonation process of concrete, involving the interplay of carbon dioxide with the water present into the pores. Indeed, the model here proposed, besides describing transport and diffusion processes inside the porous medium, takes into account both fast and slow phenomena as intermediate reactions of the carbonation process. As a model validation, by using the mathematical based simulation algorithm we are able to describe the effects of the interaction between concrete and CO on the porosity of material as shown by the numerical results in substantial accordance with experimental results of accelerated carbonation taken from literature. We also considered a further reaction: the dissolution of calcium carbonate under an acid environment. As a result, a trend inversion in the evolution of porosity can be observed for long exposure times. Such an increase in porosity results in the accessibility of solutions and pollutants within the concrete leading to an higher permeability and diffusivity thus significantly affecting its durability.

A forecasting model for the porosity variation during the carbonation process

Bretti G;Ceseri M;Natalini R;
2022

Abstract

In this paper we introduce a mathematical model of concrete carbonation Portland cement specimens. The main novelty of this work is to describe the intermediate chemical reactions, occurring in the carbonation process of concrete, involving the interplay of carbon dioxide with the water present into the pores. Indeed, the model here proposed, besides describing transport and diffusion processes inside the porous medium, takes into account both fast and slow phenomena as intermediate reactions of the carbonation process. As a model validation, by using the mathematical based simulation algorithm we are able to describe the effects of the interaction between concrete and CO on the porosity of material as shown by the numerical results in substantial accordance with experimental results of accelerated carbonation taken from literature. We also considered a further reaction: the dissolution of calcium carbonate under an acid environment. As a result, a trend inversion in the evolution of porosity can be observed for long exposure times. Such an increase in porosity results in the accessibility of solutions and pollutants within the concrete leading to an higher permeability and diffusivity thus significantly affecting its durability.
2022
Istituto Applicazioni del Calcolo ''Mauro Picone''
Concrete carbonation · Reaction and diffusion models · Model parameter estimation · Finite difference schemes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact