On considère les espaces de Sobolev Hs(?) et , et l'espace de Besov , ou ? est un domaine suffisamment régulier (voir Lemme 2) de R2. On sait que pour des valeurs de s?[0,1/2) les deux espaces de Sobolev coïncident, avec équivalence des normes, et qu'on a l'inclusion . Cet article donne une analyse explicite des constantes qui apparaissent dans les bornes d'inclusion and et, plus précisément, de leur dépendance du paramètre de régularité s. On utilise pour cela la caractérisation par ondelettes des normes correspondantes.
We consider the Sobolev spaces Hs(?) and and the Besov spaces , where ? is a sufficiently regular (see Lemma 2) subdomain of R2. It is well known that for the values of s?[0,1/2) the two Sobolev spaces coincide, with equivalence of the norms, and that the inclusion holds. The Note is concerned with the explicit analysis of the constants appearing in the continuity bounds for the injections and and of their dependence on the regularity s of the spaces. The analysis is carried out by using the wavelet characterization of the corresponding norms.
Analysis of some injection bounds for Sobolev spaces by wavelet decomposition
S Bertoluzza;
2011
Abstract
We consider the Sobolev spaces Hs(?) and and the Besov spaces , where ? is a sufficiently regular (see Lemma 2) subdomain of R2. It is well known that for the values of s?[0,1/2) the two Sobolev spaces coincide, with equivalence of the norms, and that the inclusion holds. The Note is concerned with the explicit analysis of the constants appearing in the continuity bounds for the injections and and of their dependence on the regularity s of the spaces. The analysis is carried out by using the wavelet characterization of the corresponding norms.File | Dimensione | Formato | |
---|---|---|---|
prod_31615-doc_92726.pdf
solo utenti autorizzati
Descrizione: Analysis of some injection bounds for Sobolev spaces by wavelet decomposition
Dimensione
127.22 kB
Formato
Adobe PDF
|
127.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.