Carbon disulfide is an archetypal double-bonded molecule belonging to the class of group IV-group VI, AB(2) compounds. It is widely believed that, upon compression to several GPa at room temperature and above, a polymeric chain of type (-(C=S)-S-)(n), named Bridgman's black polymer, will form. By combining optical spectroscopy and synchrotron X-ray diffraction data with ab initio simulations, we demonstrate that the structure of this polymer is different. Solid molecular CS2 polymerizes at similar to 10-11 GPa. The polymer is disordered and consists of a mixture of 3-fold (C3) and 4-fold (C4) coordinated carbon atoms with some C=C double bonds. The C4/C3 ratio continuously increases upon further compression to 40 GPa. Upon decompression, structural changes are partially reverted, while the sample also undergoes partial disproportionation. Our work uncovers the nontrivial high-pressure structural evolution in one of the simplest molecular systems exhibiting molecular as well as polymeric phases.

High-Pressure Structural Evolution of Disordered Polymeric CS2

Gorelli Federico;Santoro Mario
2021

Abstract

Carbon disulfide is an archetypal double-bonded molecule belonging to the class of group IV-group VI, AB(2) compounds. It is widely believed that, upon compression to several GPa at room temperature and above, a polymeric chain of type (-(C=S)-S-)(n), named Bridgman's black polymer, will form. By combining optical spectroscopy and synchrotron X-ray diffraction data with ab initio simulations, we demonstrate that the structure of this polymer is different. Solid molecular CS2 polymerizes at similar to 10-11 GPa. The polymer is disordered and consists of a mixture of 3-fold (C3) and 4-fold (C4) coordinated carbon atoms with some C=C double bonds. The C4/C3 ratio continuously increases upon further compression to 40 GPa. Upon decompression, structural changes are partially reverted, while the sample also undergoes partial disproportionation. Our work uncovers the nontrivial high-pressure structural evolution in one of the simplest molecular systems exhibiting molecular as well as polymeric phases.
2021
Istituto Nazionale di Ottica - INO
carbon-dioxide; crystal-structure; cristobalite; coordination
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact