We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV 14 (2008) 494-516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids 56 (2008) 1885-1904.]. © 2009 EDP Sciences, SMAI.
Weighted energy-dissipation functionals for gradient flows
U Stefanelli
2011
Abstract
We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV 14 (2008) 494-516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids 56 (2008) 1885-1904.]. © 2009 EDP Sciences, SMAI.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.