We present a novel variational approach to gradient-flow evolution in metric spaces. In particular, we advance a functional defined on entire trajectories, whose minimizers converge to curves of maximal slope for geodesically convex energies. The crucial step of the argument is the reformulation of the variational approach in terms of a dynamic programming principle, and the use of the corresponding Hamilton-Jacobi equation. The result is applicable to a large class of nonlinear evolution PDEs including nonlinear drift-diffusion, Fokker-Planck, and heat flows on metric-measure spaces

A variational principle for gradient flows in metric spaces

R Rossi;A Segatti;U Stefanelli
2011

Abstract

We present a novel variational approach to gradient-flow evolution in metric spaces. In particular, we advance a functional defined on entire trajectories, whose minimizers converge to curves of maximal slope for geodesically convex energies. The crucial step of the argument is the reformulation of the variational approach in terms of a dynamic programming principle, and the use of the corresponding Hamilton-Jacobi equation. The result is applicable to a large class of nonlinear evolution PDEs including nonlinear drift-diffusion, Fokker-Planck, and heat flows on metric-measure spaces
2011
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
File in questo prodotto:
File Dimensione Formato  
prod_31636-doc_94616.pdf

solo utenti autorizzati

Descrizione: A variational principle for gradient flows in metric spaces
Dimensione 137.86 kB
Formato Adobe PDF
137.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/44379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 12
social impact