We present a global variational approach to the L 2-gradient flow of the area functional of cartesian surfaces through the study of the so-called weighted energy-dissipation (WED) functional. In particular, we prove a relaxation result which allows us to show that minimizers of the WED converge in a quantitatively prescribed way to gradient-flow trajectories of the relaxed area functional. The result is then extended to general parabolic quasilinear equations arising as gradient flows of convex functionals with linear growth.
A variational view at the time-dependent minimal surface equation
U Stefanelli
2011
Abstract
We present a global variational approach to the L 2-gradient flow of the area functional of cartesian surfaces through the study of the so-called weighted energy-dissipation (WED) functional. In particular, we prove a relaxation result which allows us to show that minimizers of the WED converge in a quantitatively prescribed way to gradient-flow trajectories of the relaxed area functional. The result is then extended to general parabolic quasilinear equations arising as gradient flows of convex functionals with linear growth.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_31638-doc_94618.pdf
solo utenti autorizzati
Descrizione: A variational view at the time-dependent minimal surface equation
Dimensione
251.13 kB
Formato
Adobe PDF
|
251.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.