In this work, for the first time, we studied the temperature-dependent spectral emittance of highly refractory ceramics, e.g. silicon carbide (SiC) and two ultra-high temperature ceramics (tantalum diboride (TaB), zirconium diboride (ZrB)) to evaluate their potential for solar tower receivers applications. We measured the spectral normal emittance from 1 µm to 21 µm at temperatures up to 850 °C, in vacuum, by means of a novel experimental setup composed by an electric furnace connected to a FT-IR spectrometer. Comparison with previously published data collected with a different setup was also carried out to validate the results. In addition, the experimental spectral emittance was also compared with the values calculated from hemispherical reflectance at room temperature by means of Kirchhoff's law. The results show that surface features play a fundamental role in the emittance of investigated ceramics.

Spectral emittance of ceramics for high temperature solar receivers

Azzali N;Meucci M;Di Rosa D;Mercatelli L;Silvestroni L;Sciti D;Sani E
2021

Abstract

In this work, for the first time, we studied the temperature-dependent spectral emittance of highly refractory ceramics, e.g. silicon carbide (SiC) and two ultra-high temperature ceramics (tantalum diboride (TaB), zirconium diboride (ZrB)) to evaluate their potential for solar tower receivers applications. We measured the spectral normal emittance from 1 µm to 21 µm at temperatures up to 850 °C, in vacuum, by means of a novel experimental setup composed by an electric furnace connected to a FT-IR spectrometer. Comparison with previously published data collected with a different setup was also carried out to validate the results. In addition, the experimental spectral emittance was also compared with the values calculated from hemispherical reflectance at room temperature by means of Kirchhoff's law. The results show that surface features play a fundamental role in the emittance of investigated ceramics.
2021
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Istituto Nazionale di Ottica - INO
spectral emittance
solar absorber
silicon carbide
boride
concentrating solar power
optical properties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/443836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact