Mediterranean pine plantations provide several ecosystem services but are vulnerable to climate change. Forest management might play a strategic role in the adaptation of Mediterranean forests, but the joint effect of climate change and diverse management options have seldom been investigated together. Here, we simulated the development of a Laricio pine (Pinus nigra subsp. laricio) stand in the Bonis watershed (southern Italy) from its establishment in 1958 up to 2095 using a state-of-the-science process-based forest model. The model was run under three climate scenarios corresponding to increasing levels of atmospheric CO2 concentration and warming, and six management options with different goals, including wood production and renaturalization. We analysed the effect of climate change on annual carbon fluxes (i.e., gross and net primary production) and stocks (i.e., basal area, standing and harvested carbon woody stocks) of the autotrophic compartment, as well as the impact of different management options compared to a no management baseline. Results show that higher temperatures (+3 to +5 °C) and lower precipitation (-20 % to -22 %) will trigger a decrease in net primary productivity in the second half of the century. Compared to no management, the other options had a moderate effect on carbon fluxes over the whole simulation (between -14 % and +11 %). While standing woody biomass was reduced by thinning interventions and the shelterwood system (between -5 % and -41 %), overall carbon stocks including the harvested wood were maximized (between +41 % and +56 %). Results highlight that management exerts greater effects on the carbon budget of Laricio pine plantations than climate change alone, and that climate change and management are largely independent (i.e., no strong interaction effects). Therefore, appropriate silvicultural strategies might enhance potential carbon stocks and improve forest conditions, with cascading positive effects on the provision of ecosystem services in Mediterranean pine plantations.

Simulating diverse forest management options in a changing climate on a Pinus nigra subsp. laricio plantation in Southern Italy

Testolin R;Dalmonech D;D'Andrea E;Matteucci G;Collalti A
2023

Abstract

Mediterranean pine plantations provide several ecosystem services but are vulnerable to climate change. Forest management might play a strategic role in the adaptation of Mediterranean forests, but the joint effect of climate change and diverse management options have seldom been investigated together. Here, we simulated the development of a Laricio pine (Pinus nigra subsp. laricio) stand in the Bonis watershed (southern Italy) from its establishment in 1958 up to 2095 using a state-of-the-science process-based forest model. The model was run under three climate scenarios corresponding to increasing levels of atmospheric CO2 concentration and warming, and six management options with different goals, including wood production and renaturalization. We analysed the effect of climate change on annual carbon fluxes (i.e., gross and net primary production) and stocks (i.e., basal area, standing and harvested carbon woody stocks) of the autotrophic compartment, as well as the impact of different management options compared to a no management baseline. Results show that higher temperatures (+3 to +5 °C) and lower precipitation (-20 % to -22 %) will trigger a decrease in net primary productivity in the second half of the century. Compared to no management, the other options had a moderate effect on carbon fluxes over the whole simulation (between -14 % and +11 %). While standing woody biomass was reduced by thinning interventions and the shelterwood system (between -5 % and -41 %), overall carbon stocks including the harvested wood were maximized (between +41 % and +56 %). Results highlight that management exerts greater effects on the carbon budget of Laricio pine plantations than climate change alone, and that climate change and management are largely independent (i.e., no strong interaction effects). Therefore, appropriate silvicultural strategies might enhance potential carbon stocks and improve forest conditions, with cascading positive effects on the provision of ecosystem services in Mediterranean pine plantations.
2023
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Istituto per la BioEconomia - IBE
Mediterranean forests
Cliamte Change
Forest management
Process-based model
3D-CMCC-FEM
Autotrophic reponse
Laricio pine
File in questo prodotto:
File Dimensione Formato  
prod_472117-doc_192210.pdf

solo utenti autorizzati

Descrizione: Testolin_et_al_2023_STOTEN
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact