Triplet ground-state organic molecules are of interest with respect to several emerging technologies but usually show limited stability, especially as thin films. We report an organic diradical, consisting of two Blatter radicals, that possesses a triplet ground state with a singlet-triplet energy gap, ?EST? 0.4-0.5 kcal mol-1(2J/k ? 220-275 K). The diradical possesses robust thermal stability, with an onset of decomposition above 264 °C (TGA). In toluene/chloroform, glassy matrix, and fluid solution, an equilibrium between two conformations with ?EST? 0.4 kcal mol-1and ?EST? -0.7 kcal mol-1is observed, favoring the triplet ground state over the singlet ground-state conformation in the 110-330 K temperature range. The diradical with the triplet ground-state conformation is found exclusively in crystals and in a polystyrene matrix. The crystalline neutral diradical is a good electrical conductor with conductivity comparable to the thoroughly optimized bis(thiazolyl)-related monoradicals. This is surprising because the triplet ground state implies that the underlying ?-system is cross-conjugated and thus is not compatible with either good conductance or electron delocalization. The diradical is evaporated under ultra-high vacuum to form thin films, which are stable in air for at least 18 h, as demonstrated by X-ray photoelectron and electron paramagnetic resonance (EPR) spectroscopies

High-Spin (S = 1) Blatter-Based Diradical with Robust Stability and Electrical Conductivity

Calzolari A;
2022

Abstract

Triplet ground-state organic molecules are of interest with respect to several emerging technologies but usually show limited stability, especially as thin films. We report an organic diradical, consisting of two Blatter radicals, that possesses a triplet ground state with a singlet-triplet energy gap, ?EST? 0.4-0.5 kcal mol-1(2J/k ? 220-275 K). The diradical possesses robust thermal stability, with an onset of decomposition above 264 °C (TGA). In toluene/chloroform, glassy matrix, and fluid solution, an equilibrium between two conformations with ?EST? 0.4 kcal mol-1and ?EST? -0.7 kcal mol-1is observed, favoring the triplet ground state over the singlet ground-state conformation in the 110-330 K temperature range. The diradical with the triplet ground-state conformation is found exclusively in crystals and in a polystyrene matrix. The crystalline neutral diradical is a good electrical conductor with conductivity comparable to the thoroughly optimized bis(thiazolyl)-related monoradicals. This is surprising because the triplet ground state implies that the underlying ?-system is cross-conjugated and thus is not compatible with either good conductance or electron delocalization. The diradical is evaporated under ultra-high vacuum to form thin films, which are stable in air for at least 18 h, as demonstrated by X-ray photoelectron and electron paramagnetic resonance (EPR) spectroscopies
2022
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
SLOW BETA-PROCESS; ORGANIC RADICALS; GROUND-STATE; NITRONYL NITROXIDE; NON-KEKULE; MOLECULES; GLASS; CONJUGATION; TEMPERATURE
File in questo prodotto:
File Dimensione Formato  
JACS_DiRad.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact