The synthesis and characterization of a family of indene-C60 adducts obtained via Diels-Alder cycloaddition [4 + 2] are reported. The new C60 derivatives include indenes with a variety of functional groups. These adducts show lowest unoccupied molecular orbital energy levels to be at the right position to consider these compounds as electron-transporting materials for planar heterojunction perovskite solar cells. Selected derivatives were applied into inverted (p-i-n configuration) perovskite device architectures, fabricated on flexible polymer substrates, with large active areas (1 cm2). The highest power conversion efficiency, reaching 13.61%, was obtained for the 6?-acetamido-1?,4?-dihydro-naphtho[2?,3?:1,2][5,6]fullerene-C60 (NHAc-ICMA). Spectroscopic characterization was applied to visualize possible passivation effects of the perovskite's surface induced by these adducts.
Designing New Indene-Fullerene Derivatives as ElectronTransporting Materials for Flexible Perovskite Solar Cells
Radicchi E;Mosconi E;De Angelis F;
2021
Abstract
The synthesis and characterization of a family of indene-C60 adducts obtained via Diels-Alder cycloaddition [4 + 2] are reported. The new C60 derivatives include indenes with a variety of functional groups. These adducts show lowest unoccupied molecular orbital energy levels to be at the right position to consider these compounds as electron-transporting materials for planar heterojunction perovskite solar cells. Selected derivatives were applied into inverted (p-i-n configuration) perovskite device architectures, fabricated on flexible polymer substrates, with large active areas (1 cm2). The highest power conversion efficiency, reaching 13.61%, was obtained for the 6?-acetamido-1?,4?-dihydro-naphtho[2?,3?:1,2][5,6]fullerene-C60 (NHAc-ICMA). Spectroscopic characterization was applied to visualize possible passivation effects of the perovskite's surface induced by these adducts.| File | Dimensione | Formato | |
|---|---|---|---|
|
448.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
5.35 MB
Formato
Adobe PDF
|
5.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


