In multitemporal interferometric synthetic aperture radar (InSAR) applications, propagation delay in the troposphere introduces a major source of disturbance known as atmospheric phase screen (APS). This study proposes a novel framework to compensate for the APS from multitemporal ground-based InSAR data. The proposed framework first performs time-series clustering in accordance with the temporal APS behavior realized by the k-means clustering approach. In the second step, joint estimation of the APS and displacement velocity is performed. For this purpose, a novel interferometric signal model, including the APS modeled by the median profiles defined in each cluster, is proposed. The proposed framework is validated with the Ku-band ground-based synthetic aperture radar data sets measured over a mountainous area in Kumamoto, Japan. Tests on these data sets reveal that compared with the conventional approach, the presented approach improves displacement estimation accuracy under severe atmospheric conditions.
Time-Series Clustering Methodology for Estimating Atmospheric Phase Screen in Ground-Based InSAR Data
Nico G;
2021
Abstract
In multitemporal interferometric synthetic aperture radar (InSAR) applications, propagation delay in the troposphere introduces a major source of disturbance known as atmospheric phase screen (APS). This study proposes a novel framework to compensate for the APS from multitemporal ground-based InSAR data. The proposed framework first performs time-series clustering in accordance with the temporal APS behavior realized by the k-means clustering approach. In the second step, joint estimation of the APS and displacement velocity is performed. For this purpose, a novel interferometric signal model, including the APS modeled by the median profiles defined in each cluster, is proposed. The proposed framework is validated with the Ku-band ground-based synthetic aperture radar data sets measured over a mountainous area in Kumamoto, Japan. Tests on these data sets reveal that compared with the conventional approach, the presented approach improves displacement estimation accuracy under severe atmospheric conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Time-Series_Clustering_Methodology_for_Estimating_Atmospheric_Phase_Screen_in_Ground-Based_InSAR_Data.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
9.12 MB
Formato
Adobe PDF
|
9.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


