Self-driving systems have recently received massive attention in both academic and industrial contexts, leading to major improvements in standard navigation scenarios typically identified as well-maintained urban routes. Critical events like road accidents or unexpected obstacles, however, require the execution of specific emergency actions that deviate from the ordinary driving behavior and are therefore harder to incorporate in the system. In this context, we propose a system that is specifically built to take control of the vehicle and perform an emergency maneuver in case of a dangerous scenario. The presented architecture is based on a deep reinforcement learning algorithm, trained in a simulated environment and using raw sensory data as input. We evaluate the system's performance on several typical pre-accident scenario and show promising results, with the vehicle being able to consistently perform an avoidance maneuver to nullify or minimize the incoming damage.

Reinforced Damage Minimization in Critical Events for Self-driving Vehicles

Merola F;Falchi F;Gennaro C;Di Benedetto M
2022

Abstract

Self-driving systems have recently received massive attention in both academic and industrial contexts, leading to major improvements in standard navigation scenarios typically identified as well-maintained urban routes. Critical events like road accidents or unexpected obstacles, however, require the execution of specific emergency actions that deviate from the ordinary driving behavior and are therefore harder to incorporate in the system. In this context, we propose a system that is specifically built to take control of the vehicle and perform an emergency maneuver in case of a dangerous scenario. The presented architecture is based on a deep reinforcement learning algorithm, trained in a simulated environment and using raw sensory data as input. We evaluate the system's performance on several typical pre-accident scenario and show promising results, with the vehicle being able to consistently perform an avoidance maneuver to nullify or minimize the incoming damage.
2022
Autonomous Driving
Reinforcement Learning
Critical Scenarios
Deep Learning
Double Deep Q-learning
Vision Based
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact