Increasing data suggest that overnutrition-induced obesity may trigger an inflammatory process in adipose tissue and upturn in the innate immune system. Numerous players have been involved in governing the inflammatory response, including epigenetics. Among epigenetic players, miRNAs are emerging as crucial regulators of immune cell development, immune responses, autoimmunity, and inflammation. In this study, we aimed at identifying the involvement of candidate miRNAs in relation to inflammation-associated biomarkers in a subsample of European children with overweight and obesity participating in the I.Family study. The study sample included individuals with increased adiposity since this condition contributes to the early occurrence of chronic low-grade inflammation. We focused on the acute-phase reagent C-reactive protein (CRP) as the primary outcome and selected cytokines as plausible biomarkers of inflammation. We found that chronic low-grade CRP elevation shows a highly significant association with miR-26b-3p and hsa-miR-576-5p in boys. Furthermore, the association of CRP with hsa-miR-10b-5p and hsa-miR-31-5p is highly significant in girls. We also observed major sex-related associations of candidate miRNAs with selected cytokines. Except for IL-6, a significant association of hsa-miR-26b-3p and hsa-miR-576-5p with TNF-, IL1-Ra, IL-8, and IL-15 levels was found exclusively in boys. The findings of this exploratory study suggest sex differences in the association of circulating miRNAs with inflammatory response biomarkers, and indicate a possible role of miRNAs among the candidate epigenetic mechanisms related to the process of low-grade inflammation in childhood obesity.

Circulating miRNAs Are Associated with Inflammation Biomarkers in Children with Overweight and Obesity: Results of the I.Family Study

Fabio Lauria;Giuseppe Iacomino;Paola Russo;
2022

Abstract

Increasing data suggest that overnutrition-induced obesity may trigger an inflammatory process in adipose tissue and upturn in the innate immune system. Numerous players have been involved in governing the inflammatory response, including epigenetics. Among epigenetic players, miRNAs are emerging as crucial regulators of immune cell development, immune responses, autoimmunity, and inflammation. In this study, we aimed at identifying the involvement of candidate miRNAs in relation to inflammation-associated biomarkers in a subsample of European children with overweight and obesity participating in the I.Family study. The study sample included individuals with increased adiposity since this condition contributes to the early occurrence of chronic low-grade inflammation. We focused on the acute-phase reagent C-reactive protein (CRP) as the primary outcome and selected cytokines as plausible biomarkers of inflammation. We found that chronic low-grade CRP elevation shows a highly significant association with miR-26b-3p and hsa-miR-576-5p in boys. Furthermore, the association of CRP with hsa-miR-10b-5p and hsa-miR-31-5p is highly significant in girls. We also observed major sex-related associations of candidate miRNAs with selected cytokines. Except for IL-6, a significant association of hsa-miR-26b-3p and hsa-miR-576-5p with TNF-, IL1-Ra, IL-8, and IL-15 levels was found exclusively in boys. The findings of this exploratory study suggest sex differences in the association of circulating miRNAs with inflammatory response biomarkers, and indicate a possible role of miRNAs among the candidate epigenetic mechanisms related to the process of low-grade inflammation in childhood obesity.
2022
Istituto di Scienze dell'Alimentazione - ISA
miRNAs
overweight and obesity
children/adolescents
chronic low-grade inflammation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact