The need to understand the carbon sequestration ability of trees under current and future climatic scenarios is fundamental to predict the role of forest in counterbalancing the global warming. In this study, we investigated the carbon sequestration ability of Pinus sylvestris L. in a setting of pure and mixed forests with Quercus petraea (Matt.) Liebl. in Central Poland. Beside the traditional growth measures, i.e., Ring Width, Basal Area Increment, and wood density, we utilized also a new Index called BAIden, which combines Basal Area Increment and mean ring wood density to depict the carbon sequestration ability of trees. Pinus sylvestris showed different sensitivity to climatic variability depending on tree admixture, while the Basal Area Increment and wood density presented few differences between pure and mixed forests. According to the BAIden index, carbon accumulation inP. sylvestris showed similar sensitivity to climatic variability in pure and mixed forests. The new index was also informative on the main climatic drivers of carbon sequestration. Considering future climatic scenarios, the carbon sequestration ability of P. sylvestris will be facilitated by rising temperatures in late winter-early spring and reduced by decreasing precipitation and rising temperatures during summer. Finally, we discussed the perspective and applicability of BAIden for further studies oncarbon sequestration ability under climate change.

Annual Carbon Sequestration Patterns in Trees: A Case Study from Scots Pine Monospecific Stands and Mixed Stands with Sessile Oak in Central Poland

Giberti G. S.;Giovannelli A.;
2022

Abstract

The need to understand the carbon sequestration ability of trees under current and future climatic scenarios is fundamental to predict the role of forest in counterbalancing the global warming. In this study, we investigated the carbon sequestration ability of Pinus sylvestris L. in a setting of pure and mixed forests with Quercus petraea (Matt.) Liebl. in Central Poland. Beside the traditional growth measures, i.e., Ring Width, Basal Area Increment, and wood density, we utilized also a new Index called BAIden, which combines Basal Area Increment and mean ring wood density to depict the carbon sequestration ability of trees. Pinus sylvestris showed different sensitivity to climatic variability depending on tree admixture, while the Basal Area Increment and wood density presented few differences between pure and mixed forests. According to the BAIden index, carbon accumulation inP. sylvestris showed similar sensitivity to climatic variability in pure and mixed forests. The new index was also informative on the main climatic drivers of carbon sequestration. Considering future climatic scenarios, the carbon sequestration ability of P. sylvestris will be facilitated by rising temperatures in late winter-early spring and reduced by decreasing precipitation and rising temperatures during summer. Finally, we discussed the perspective and applicability of BAIden for further studies oncarbon sequestration ability under climate change.
2022
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
basal area increment
wood density
climate change
carbon sequestration
Pinus sylvestris L.
File in questo prodotto:
File Dimensione Formato  
prod_466172-doc_183242.pdf

accesso aperto

Descrizione: Annual Carbon Sequestration Patterns in Trees: A Case Study from Scots Pine Monospecific Stands and Mixed Stands with Sessile Oak in Central Poland
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.68 MB
Formato Adobe PDF
7.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact