/ Abstract: A better comprehension of soil properties and processes permits a progress in agricultural management effectiveness, together with a diminution of environmental damage and more benefi-cial use of resources. This research investigated the usage of multispectral (Sentinel-2 MSI) satellite data at the farm/regional level, for the identification of agronomic bare soil presence, utilizing bands of the spectral range from visible to shortwave infrared. The research purpose was to assess the frequency of cloud-free bare soil time-series images available during the year in typical agricultural areas, needed for the development of digital soil mapping (DSM) approaches for agricultural appli-cations, using hyperspectral satellite missions such as current PRISMA and the planned EnMAP or CHIME. The research exploited the Google Earth Engine platform, by processing all available cloud-free Sentinel-2 images throughout a time span of four years. Two main results were obtained: (i) bare soil frequency, indicating where and when a pixel (or an agricultural field) was detected as bare surface in three representative agricultural areas of Italy, and (ii) a temporal sensitivity analy-sis, providing the acquisition frequency of useful bare soil images applicable for the retrieval of soil variables of interest. It was shown that, in order to provide for an effective agricultural soil monitoring capability, a revisit frequency in the range of five to seven days is required, which is less than the planned specifications e.g., of PRISMA or CHIME hyperspectral missions, but could be ad-dressed by combining data from the two sensors.

An analysis of bare soil occurrence in arable croplands for remote sensing topsoil applications

Pignatti S;
2021

Abstract

/ Abstract: A better comprehension of soil properties and processes permits a progress in agricultural management effectiveness, together with a diminution of environmental damage and more benefi-cial use of resources. This research investigated the usage of multispectral (Sentinel-2 MSI) satellite data at the farm/regional level, for the identification of agronomic bare soil presence, utilizing bands of the spectral range from visible to shortwave infrared. The research purpose was to assess the frequency of cloud-free bare soil time-series images available during the year in typical agricultural areas, needed for the development of digital soil mapping (DSM) approaches for agricultural appli-cations, using hyperspectral satellite missions such as current PRISMA and the planned EnMAP or CHIME. The research exploited the Google Earth Engine platform, by processing all available cloud-free Sentinel-2 images throughout a time span of four years. Two main results were obtained: (i) bare soil frequency, indicating where and when a pixel (or an agricultural field) was detected as bare surface in three representative agricultural areas of Italy, and (ii) a temporal sensitivity analy-sis, providing the acquisition frequency of useful bare soil images applicable for the retrieval of soil variables of interest. It was shown that, in order to provide for an effective agricultural soil monitoring capability, a revisit frequency in the range of five to seven days is required, which is less than the planned specifications e.g., of PRISMA or CHIME hyperspectral missions, but could be ad-dressed by combining data from the two sensors.
2021
Istituto di Metodologie per l'Analisi Ambientale - IMAA
soil monitoring
Sentinel-2
bare soil frequency
temporal sensitivity analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444440
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 25
social impact