An unmanned aerial vehicle (UAV) is exploited to characterize in situ the high-band antennas (HBAs) of the low-frequency array (LOFAR) CS302 station located in Exloo, The Netherlands. The size of an HBA array is about 30 m. The Fraunhofer distance (a few kilometers) is not reachable in the frequency band (120 to 240 MHz) within the flight regulation limits. Therefore, far-field patterns cannot be directly measured. The UAV, equipped with an radio frequency synthesizer and a dipole antenna, flies in the near-field region of the considered array. Measurement of three different frequencies (124, 150, and 180 MHz) is efficiently made during the same UAV flight. The near-field focusing method is exploited to validate the far-field pattern of the array under test within an angular range around the beam axis. Such a technique avoids both the time consuming lambda/2 sampling of the aperture field and the further application of computationally heavy near-field to far-field transformations. The array beam is well reconstructed in the main lobe and first sidelobes within a 2D scan plane sampled with a radial raster. A further postprocessing technique is proposed and validated on a subarray of HBAs. It suggests efficient ways for the future characterization of regular aperture arrays for SKA-MID Phase 2. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.

Measurement of the LOFAR-HBA beam patterns using an unmanned aerial vehicle in the near field

Virone Giuseppe;Paonessa Fabio;Ciorba Lorenzo;Matteoli Stefania;Addamo Giuseppe
2021

Abstract

An unmanned aerial vehicle (UAV) is exploited to characterize in situ the high-band antennas (HBAs) of the low-frequency array (LOFAR) CS302 station located in Exloo, The Netherlands. The size of an HBA array is about 30 m. The Fraunhofer distance (a few kilometers) is not reachable in the frequency band (120 to 240 MHz) within the flight regulation limits. Therefore, far-field patterns cannot be directly measured. The UAV, equipped with an radio frequency synthesizer and a dipole antenna, flies in the near-field region of the considered array. Measurement of three different frequencies (124, 150, and 180 MHz) is efficiently made during the same UAV flight. The near-field focusing method is exploited to validate the far-field pattern of the array under test within an angular range around the beam axis. Such a technique avoids both the time consuming lambda/2 sampling of the aperture field and the further application of computationally heavy near-field to far-field transformations. The array beam is well reconstructed in the main lobe and first sidelobes within a 2D scan plane sampled with a radial raster. A further postprocessing technique is proposed and validated on a subarray of HBAs. It suggests efficient ways for the future characterization of regular aperture arrays for SKA-MID Phase 2. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
antenna measurements
unmanned aerial vehicle
near-field focusing
very high frequency band
large arrays
hybrid beamforming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact