Multi-orbital physics in quasi-two-dimensional electron gases (q2DEGs) triggers intriguing phenomena not observed in bulk materials, such as unconventional superconductivity and magnetism. Here, we investigate the mechanism of orbital selective switching of the spin-polarization in the oxide q2DEG formed at the (001) interface between the LaAlO3, EuTiO3 and SrTiO3 band insulators. By using density functional theory calculations, transport, magnetic and x-ray spectroscopy measurements, we find that the filling of titanium-bands with 3dxz/3dyz orbital character in the EuTiO3 layer and at the interface with SrTiO3 induces an antiferromagnetic to ferromagnetic switching of the exchange interaction between Eu-4f7 magnetic moments. The results explain the observation of the carrier density-dependent ferromagnetic correlations and anomalous Hall effect in this q2DEG, and demonstrate how combined theoretical and experimental approaches can lead to a deeper understanding of emerging electronic phases and serve as a guide for the materials design of advanced electronic applications. © 2022, The Author(s).

Orbital selective switching of ferromagnetism in an oxide quasi two-dimensional electron gas

Di Capua R;Chen Y;D'Antuono M;De Luca GM;Di Gennaro E;Stornaiuolo D;Miletto Granozio F;Sambri A;Ghiringhelli G;Salluzzo M
2022

Abstract

Multi-orbital physics in quasi-two-dimensional electron gases (q2DEGs) triggers intriguing phenomena not observed in bulk materials, such as unconventional superconductivity and magnetism. Here, we investigate the mechanism of orbital selective switching of the spin-polarization in the oxide q2DEG formed at the (001) interface between the LaAlO3, EuTiO3 and SrTiO3 band insulators. By using density functional theory calculations, transport, magnetic and x-ray spectroscopy measurements, we find that the filling of titanium-bands with 3dxz/3dyz orbital character in the EuTiO3 layer and at the interface with SrTiO3 induces an antiferromagnetic to ferromagnetic switching of the exchange interaction between Eu-4f7 magnetic moments. The results explain the observation of the carrier density-dependent ferromagnetic correlations and anomalous Hall effect in this q2DEG, and demonstrate how combined theoretical and experimental approaches can lead to a deeper understanding of emerging electronic phases and serve as a guide for the materials design of advanced electronic applications. © 2022, The Author(s).
2022
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
-
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact