Ricardo Flores (1947-2020) focused his research on the identification, replication, pathogenesis, and evolution of viroids, the minimal non-protein-coding circular RNAs (250-400?nt) able to replicate and incite diseases in plants that are remarkable for being at the lowest step of the biological scale. He and his collaborators initially identified and characterized additional group members, adding six new ones to the family Pospiviroidae, and expanding the Avsunviroidae from one to four members. They showed that members of the second family "encode" ribozymes, a property that, together with others, makes them candidates for being the most primitive replicons that emerged on our planet 3500 million years ago. He also made important contributions regarding how viroids replicate, providing relevant data on the templates, enzymes, and ribozymes that mediate this process and on the mutation rate, which turned out to be the highest reported for any biological entity. More recently, he concentrated on the role that RNA silencing could play on viroid-host interactions, describing details of this process. Ricardo also worked on citrus tristeza virus, a widely different type of subcellular pathogen, and made important contributions on the structure, localization and functions of its unique p23 protein. His research has produced 170 original articles and reviews, according to Web of Science. He encouraged the scientific careers of a large number of researchers, and collaborated with many others, some of whom have recapitulated his scientific legacy in this review and contributed with other chapters in this special issue.
In memoriam of Ricardo Flores: The career, achievements, and legacy of an inspirational plant virologist
Navarro B;Di Serio F;
2022
Abstract
Ricardo Flores (1947-2020) focused his research on the identification, replication, pathogenesis, and evolution of viroids, the minimal non-protein-coding circular RNAs (250-400?nt) able to replicate and incite diseases in plants that are remarkable for being at the lowest step of the biological scale. He and his collaborators initially identified and characterized additional group members, adding six new ones to the family Pospiviroidae, and expanding the Avsunviroidae from one to four members. They showed that members of the second family "encode" ribozymes, a property that, together with others, makes them candidates for being the most primitive replicons that emerged on our planet 3500 million years ago. He also made important contributions regarding how viroids replicate, providing relevant data on the templates, enzymes, and ribozymes that mediate this process and on the mutation rate, which turned out to be the highest reported for any biological entity. More recently, he concentrated on the role that RNA silencing could play on viroid-host interactions, describing details of this process. Ricardo also worked on citrus tristeza virus, a widely different type of subcellular pathogen, and made important contributions on the structure, localization and functions of its unique p23 protein. His research has produced 170 original articles and reviews, according to Web of Science. He encouraged the scientific careers of a large number of researchers, and collaborated with many others, some of whom have recapitulated his scientific legacy in this review and contributed with other chapters in this special issue.File | Dimensione | Formato | |
---|---|---|---|
prod_474364-doc_193476.pdf
solo utenti autorizzati
Descrizione: Pallas et al., 2022
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
11.08 MB
Formato
Adobe PDF
|
11.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.