The Daytime Approach for gas Flaring Investigation (DAFI), running in Google Earth Engine (GEE) environment, exploits a Normalized Hotspot Index (NHI), analyzing near-infrared and short-wave infrared radiances, to detect worldwide high-temperature gas flaring sites (GFs). Daytime Landsat 8--Operational Land Imager (OLI) observations, of 2013-2021, represents the employed dataset. A temporal persistence criterion is applied to a gas flaring customized NHI product to select the GFs. It assures the 99% detection accuracy of more intense and stable GFs, with a very low false positive rate. As a result, the first daytime database and map of GF sites, operating during the last 9 years at global scale, has been generated. For each site, geographical metadata, frequency of occurrence and time persistence levels, at both monthly and annual scale, may be examined, through the specific developed GEE App. The present database will complement/integrate existing gas flaring maps. The joint use of global scale daytime and nighttime GFs inventories, in fact, will allow for tracking gas flaring dynamics in a timely manner. Moreover, it enables a better evaluation of GF emissions into the atmosphere. Finally, the next DAFI implementation on Landsat 9 and Sentinel 2 data will further improve our capabilities in identifying, mapping, monitoring and characterizing the GFs.

A Tailored Approach for the Global Gas Flaring Investigation by Means of Daytime Satellite Imagery

Faruolo M;Marchese F;Pergola N
2022

Abstract

The Daytime Approach for gas Flaring Investigation (DAFI), running in Google Earth Engine (GEE) environment, exploits a Normalized Hotspot Index (NHI), analyzing near-infrared and short-wave infrared radiances, to detect worldwide high-temperature gas flaring sites (GFs). Daytime Landsat 8--Operational Land Imager (OLI) observations, of 2013-2021, represents the employed dataset. A temporal persistence criterion is applied to a gas flaring customized NHI product to select the GFs. It assures the 99% detection accuracy of more intense and stable GFs, with a very low false positive rate. As a result, the first daytime database and map of GF sites, operating during the last 9 years at global scale, has been generated. For each site, geographical metadata, frequency of occurrence and time persistence levels, at both monthly and annual scale, may be examined, through the specific developed GEE App. The present database will complement/integrate existing gas flaring maps. The joint use of global scale daytime and nighttime GFs inventories, in fact, will allow for tracking gas flaring dynamics in a timely manner. Moreover, it enables a better evaluation of GF emissions into the atmosphere. Finally, the next DAFI implementation on Landsat 9 and Sentinel 2 data will further improve our capabilities in identifying, mapping, monitoring and characterizing the GFs.
2022
Istituto di Metodologie per l'Analisi Ambientale - IMAA
DAFI GEE App
daytime infrared observations
gas flaring
Landsat 8-OLI
NHI
File in questo prodotto:
File Dimensione Formato  
prod_476636-doc_194859.pdf

accesso aperto

Descrizione: A Tailored Approach for the Global Gas Flaring Investigation by Means of Daytime Satellite Imagery
Tipologia: Versione Editoriale (PDF)
Dimensione 6.22 MB
Formato Adobe PDF
6.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact