To increase the production of decorated anthocyanins in potato cell cultures, we knocked out a novel potato gene, named Inducer Silencing of Anthocyanins in Cell culture (StISAC), using CRISPR-Cas9 editing. Our results provided evidence that mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. Moreover, the production of these important pigments was stabilized over time. Our study overcame important challenges in the efficient biotechnological production of these valuable pigments and reported the function of a novel anthocyanin biosynthesis repressor gene.

Targeted mutagenesis of StISAC stabilizes the production of anthocyanins in potato cell culture

D'Amelia V;
2022

Abstract

To increase the production of decorated anthocyanins in potato cell cultures, we knocked out a novel potato gene, named Inducer Silencing of Anthocyanins in Cell culture (StISAC), using CRISPR-Cas9 editing. Our results provided evidence that mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. Moreover, the production of these important pigments was stabilized over time. Our study overcame important challenges in the efficient biotechnological production of these valuable pigments and reported the function of a novel anthocyanin biosynthesis repressor gene.
2022
Istituto di Bioscienze e Biorisorse
calli
CRISPR-Cas9
R3-MYB
Solanum tuberosum
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact