Complemented with the coupling of the most sensitive and challenging interaction between terrestrial hydrology and atmosphere, the Bhagirathi-Alaknanda basin of the Garhwal Himalaya requires advanced dynamic and most comprehensively coupled atmospheric-hydrological models for simulation of streamflows. WRF-Hydro model which is enhanced by integrating most advanced set of hydrologic physics parameterization accounting for lateral water flow occurring on the land surface is the most compatible for this basin. This paper illustrates the development and the calibration of WRF-Hydro model through construction of flow matrices for different seasons.

Calibration of WRF-Hydro for Bhagirathi -Alaknanda Basin

MIGLIETTA, MARIO
2022

Abstract

Complemented with the coupling of the most sensitive and challenging interaction between terrestrial hydrology and atmosphere, the Bhagirathi-Alaknanda basin of the Garhwal Himalaya requires advanced dynamic and most comprehensively coupled atmospheric-hydrological models for simulation of streamflows. WRF-Hydro model which is enhanced by integrating most advanced set of hydrologic physics parameterization accounting for lateral water flow occurring on the land surface is the most compatible for this basin. This paper illustrates the development and the calibration of WRF-Hydro model through construction of flow matrices for different seasons.
2022
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
WRF-Hydro Model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact