A methodology to generate calibrated maps of soil moisture from C-band synthetic aperture radar (SAR) images processed by SAR interferometry (InSAR) technique is presented. The proposed methodology uses atmospheric phase delay (APD) maps obtained from a time series of Sentinel-1 interferograms, to disentangle the APD and soil moisture contributions to Sentinel-1 interferograms. We show how the high spatial resolution and short temporal baseline of Sentinel-1 image can help to estimate soil moisture using a daisy chain InSAR processing. The estimated soil moisture maps are compared with in situ data collected by five soil moisture sensors installed in an experimental field, characterized by bare soil, located close to Lisbon, Portugal. Results show that after removing the APD effects in SAR interferogram, there is a correction of the bias in the soil moisture estimation and an improvement in the correlation coefficient with the soil moisture measurements, from 0.38 to 0.78. Soil moisture changes were measured during a sequence of rain events in the winter season. A root-mean-square (rms) error less than 0.04 m³/m³ was found over a variety of meteorological conditions.

Soil Moisture Estimation Using Atmospherically Corrected C-Band InSAR Data

Nico G;
2021

Abstract

A methodology to generate calibrated maps of soil moisture from C-band synthetic aperture radar (SAR) images processed by SAR interferometry (InSAR) technique is presented. The proposed methodology uses atmospheric phase delay (APD) maps obtained from a time series of Sentinel-1 interferograms, to disentangle the APD and soil moisture contributions to Sentinel-1 interferograms. We show how the high spatial resolution and short temporal baseline of Sentinel-1 image can help to estimate soil moisture using a daisy chain InSAR processing. The estimated soil moisture maps are compared with in situ data collected by five soil moisture sensors installed in an experimental field, characterized by bare soil, located close to Lisbon, Portugal. Results show that after removing the APD effects in SAR interferogram, there is a correction of the bias in the soil moisture estimation and an improvement in the correlation coefficient with the soil moisture measurements, from 0.38 to 0.78. Soil moisture changes were measured during a sequence of rain events in the winter season. A root-mean-square (rms) error less than 0.04 m³/m³ was found over a variety of meteorological conditions.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Soil moisture
Sentinel-1
Copernicus
SAR interferometry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/444734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact