Microarrays are broadly used in the omic investigation and have several areas of applications in biology and medicine, providing a significant amount of data for a single experiment. Different kinds of microarrays are available, identifiable by characteristics such as the type of probes, the surface used as support, and the method used for the target detection. To better deal with microarray datasets, the development of microarray data analysis protocols simple to use as well as able to produce accurate reports, and comprehensible results arise. The object of this paper is to provide a general protocol showing how to choose the best software tool to analyze microarray data, allowing to efficiently figure out genomic/pharmacogenomic biomarkers.
Microarray Data Analysis Protocol
Arbitrio M
2022
Abstract
Microarrays are broadly used in the omic investigation and have several areas of applications in biology and medicine, providing a significant amount of data for a single experiment. Different kinds of microarrays are available, identifiable by characteristics such as the type of probes, the surface used as support, and the method used for the target detection. To better deal with microarray datasets, the development of microarray data analysis protocols simple to use as well as able to produce accurate reports, and comprehensible results arise. The object of this paper is to provide a general protocol showing how to choose the best software tool to analyze microarray data, allowing to efficiently figure out genomic/pharmacogenomic biomarkers.| File | Dimensione | Formato | |
|---|---|---|---|
|
Cap17 agapito & arbitrio 2022.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
89.12 kB
Formato
Adobe PDF
|
89.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


