Social bots are automated accounts often involved in unethical or illegal activities. Academia has shown how these accounts evolve over time, becoming increasingly smart at hiding their true nature by disguising themselves as genuine accounts. If they evade, bots hunters adapt their solutions to find them: the cat and mouse game. Inspired by adversarial machine learning and computer security, we propose an adversarial and proactive approach to social bot detection, and we call scholars to arms, to shed light on this open and intriguing field of study.
The coming age of adversarial social bot detection
S Cresci;M Petrocchi;
2021
Abstract
Social bots are automated accounts often involved in unethical or illegal activities. Academia has shown how these accounts evolve over time, becoming increasingly smart at hiding their true nature by disguising themselves as genuine accounts. If they evade, bots hunters adapt their solutions to find them: the cat and mouse game. Inspired by adversarial machine learning and computer security, we propose an adversarial and proactive approach to social bot detection, and we call scholars to arms, to shed light on this open and intriguing field of study.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_460087-doc_179265.pdf
solo utenti autorizzati
Descrizione: The coming age of adversarial social bot detection
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


