The ITER Research Plan envision operation around half of the nominal magnetic field (i.e. around B = 2.65 T) as a path to baseline operation. This work discusses constraints on the optimal range of magnetic field, which is bounded in the lower limit by the presence of the third-harmonic electron cyclotron resonance at half field, and on the upper limit by the loss of core heating and current drive. It will be shown that increasing the magnetic field by only 3%, i.e. to 2.75 T, eliminates the third harmonic parasitic absorption without compromising demonstration of access to H-mode, while operating at a magnetic field of 3.0 T - previously proposed for optimal use of the ion cyclotron system - would impair the use of the electron cyclotron system for core-heating and current drive. Operation at 2.65 T would still be possible if the polarization of the equatorial launcher is changed from X-mode to O-mode in the current flattop phase.

Implications of parasitic absorption of electron cyclotron waves on ITER operation around half-field

Farina D;Figini L;
2021

Abstract

The ITER Research Plan envision operation around half of the nominal magnetic field (i.e. around B = 2.65 T) as a path to baseline operation. This work discusses constraints on the optimal range of magnetic field, which is bounded in the lower limit by the presence of the third-harmonic electron cyclotron resonance at half field, and on the upper limit by the loss of core heating and current drive. It will be shown that increasing the magnetic field by only 3%, i.e. to 2.75 T, eliminates the third harmonic parasitic absorption without compromising demonstration of access to H-mode, while operating at a magnetic field of 3.0 T - previously proposed for optimal use of the ion cyclotron system - would impair the use of the electron cyclotron system for core-heating and current drive. Operation at 2.65 T would still be possible if the polarization of the equatorial launcher is changed from X-mode to O-mode in the current flattop phase.
2021
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
ITER
half-field operation
non-active phase
electron cyclotron heating
integrated modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/445098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact