Calcium phosphates (CaPs) have been recently proposed as a bio- and eco-compatible alternative to UV filters in sunscreens, which are in the spotlight for being associated with health 0 risks for both people and the environment. Here, natural CaPs extracted from fish bones have been tested as a booster of the sun protection factor (SPF), that is, as material working in synergy with UV filters to increase sunscreen UV-shielding efficiency, in combination with three of the most used UV filters, namely, octocrylene (OCR), octinoxate, and padimate-O, at different concentrations (10.0 and 20.0 wt %). The material obtained by calcination at 800 degrees C (CaP-N) was also enriched with Zn (CaP-Zn) or Mn (CaP-Mn) in an attempt to increase its SPF-boosting abilities. CaP-N and CaP-Zn consisted of a biphasic mixture of hydroxyapatite and beta tricalcium phosphate, while CaP-Mn presented a small quantity of Mn oxides. CaP-N was the most effective at increasing the SPF of the final emulsions, doubling the SPF of the formulation containing 20.0 wt % of OCR from 40.6 to 80.8. The results show that these CaPs, produced according to a circular economy approach, can be used as effective SPF boosters to decrease the concentration of UV filters used in sunscreen, while retaining high SPF values.
Calcium Phosphates from Fishery Byproducts as a Booster of the Sun Protection Factor in Sunscreens
Adamiano Alessio;Piccirillo Clara;Iafisco Michele
2022
Abstract
Calcium phosphates (CaPs) have been recently proposed as a bio- and eco-compatible alternative to UV filters in sunscreens, which are in the spotlight for being associated with health 0 risks for both people and the environment. Here, natural CaPs extracted from fish bones have been tested as a booster of the sun protection factor (SPF), that is, as material working in synergy with UV filters to increase sunscreen UV-shielding efficiency, in combination with three of the most used UV filters, namely, octocrylene (OCR), octinoxate, and padimate-O, at different concentrations (10.0 and 20.0 wt %). The material obtained by calcination at 800 degrees C (CaP-N) was also enriched with Zn (CaP-Zn) or Mn (CaP-Mn) in an attempt to increase its SPF-boosting abilities. CaP-N and CaP-Zn consisted of a biphasic mixture of hydroxyapatite and beta tricalcium phosphate, while CaP-Mn presented a small quantity of Mn oxides. CaP-N was the most effective at increasing the SPF of the final emulsions, doubling the SPF of the formulation containing 20.0 wt % of OCR from 40.6 to 80.8. The results show that these CaPs, produced according to a circular economy approach, can be used as effective SPF boosters to decrease the concentration of UV filters used in sunscreen, while retaining high SPF values.File | Dimensione | Formato | |
---|---|---|---|
adamiano-et-al-2022-calcium-phosphates-from-fishery-byproducts-as-a-booster-of-the-sun-protection-factor-in-sunscreens.pdf
non disponibili
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.38 MB
Formato
Adobe PDF
|
6.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.