Unfolding techniques are employed to reconstruct the 1D energy distribution of runaway electrons from Bremsstrahlung hard X-ray spectrum emitted during plasma disruptions in tokamaks. Here we compare four inversion methods: truncated singular value decomposition, which is a linear algebra technique, maximum likelihood expectation maximization, which is an iterative method, and Tikhonov regularization applied to 2 and Poisson statistics, which are two minimization approaches. The reconstruction fidelity and the capability of estimating cumulative statistics, such as the mean and maximum energy, have been assessed on both synthetic and experimental spectra. The effect of measurements limitations, such as the low energy cut and few number of counts, on the final reconstruction has also been studied. We find that the iterative method performs best as it better describes the statistics of the experimental data and is more robust to noise in the recorded spectrum.

Comparison of unfolding methods for the inference of runaway electron energy distribution from gamma-ray spectroscopic measurements

Dal Molin A;Nocente M;Croci G;Gorini G;Muraro A;Rigamonti D;Scionti J;Tardocchi M
2021

Abstract

Unfolding techniques are employed to reconstruct the 1D energy distribution of runaway electrons from Bremsstrahlung hard X-ray spectrum emitted during plasma disruptions in tokamaks. Here we compare four inversion methods: truncated singular value decomposition, which is a linear algebra technique, maximum likelihood expectation maximization, which is an iterative method, and Tikhonov regularization applied to 2 and Poisson statistics, which are two minimization approaches. The reconstruction fidelity and the capability of estimating cumulative statistics, such as the mean and maximum energy, have been assessed on both synthetic and experimental spectra. The effect of measurements limitations, such as the low energy cut and few number of counts, on the final reconstruction has also been studied. We find that the iterative method performs best as it better describes the statistics of the experimental data and is more robust to noise in the recorded spectrum.
2021
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
Nuclear instruments and methods for hot plasma diagnostics
Plasma diagnostics - interferometry
spectroscopy and imaging
Analysis and statistical methods
Plasma diagnostics - charged-particle spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/445297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact