The present study highlights the influence of support and monomer properties on the performance of thin-film composite (TFC) membranes. For this purpose, a series of polyamide-cellulose acetate thin-film composite nanofiltration (TFC-NF) membranes were prepared by interfacial polymerization technique using cellulose acetate (CA) membrane as support and the monomer of cyclohexane-1,3,5 tricarbonylchloride (HTC) as an organic phase. The effect of the cellulose acetate concentration on the pore size of the membrane support was investigated using 15%, 16.5%, 18%, 19.5%, and 21.5% of cellulose acetate. m-phenylenediamine (MPD), piperazidine (PIP), and 1,3- cyclohexanebis (methylamine) (CHMA) were studied as monomers. Results displayed that PIP/HTC membrane is more hydrophilic and has more intense granular and convex structure with rougher surface compared to the other prepared membranes. The water flow and the porosity depended on the cellulose acetate concentration. The decrease in porosity complied well with permeability, contact angle, and SEM analysis. The membrane performances were evaluated for the retention of NaCl, CaCl, and NaSO retention. Comparing the NaSO rejection with CaCl and NaCl, the former is higher than the latter.

Synthesis of a Thin-Film Polyamide-Cellulose Acetate Membrane: Effect of Monomers and Porosity on Nano-Filtration Performance

Ursino C;Figoli A;
2021

Abstract

The present study highlights the influence of support and monomer properties on the performance of thin-film composite (TFC) membranes. For this purpose, a series of polyamide-cellulose acetate thin-film composite nanofiltration (TFC-NF) membranes were prepared by interfacial polymerization technique using cellulose acetate (CA) membrane as support and the monomer of cyclohexane-1,3,5 tricarbonylchloride (HTC) as an organic phase. The effect of the cellulose acetate concentration on the pore size of the membrane support was investigated using 15%, 16.5%, 18%, 19.5%, and 21.5% of cellulose acetate. m-phenylenediamine (MPD), piperazidine (PIP), and 1,3- cyclohexanebis (methylamine) (CHMA) were studied as monomers. Results displayed that PIP/HTC membrane is more hydrophilic and has more intense granular and convex structure with rougher surface compared to the other prepared membranes. The water flow and the porosity depended on the cellulose acetate concentration. The decrease in porosity complied well with permeability, contact angle, and SEM analysis. The membrane performances were evaluated for the retention of NaCl, CaCl, and NaSO retention. Comparing the NaSO rejection with CaCl and NaCl, the former is higher than the latter.
2021
Istituto per la Tecnologia delle Membrane - ITM
Nanofiltration
TFC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/445454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact