Hole transport materials (HTMs) based on conductive organic molecules are crucial components to prepare highly efficient perovskite solar cells (PSCs). To overcome the limitations arising from the use of the most common Spiro-OMeTAD, hindering large-scale PSCs production, alternative HTMs are highly desirable. Therefore, several fully organic molecules mainly based on triphenylamine moieties have already been proposed. However, there is still room for the development of more efficient and easily obtainable HTMs. Within this framework, the in silico design of four novel triphenylamine/phenothiazine-based HTMs (HTM1-4) is presented here. Their electronic and molecular properties have been investigated by means of Density Functional Theory (DFT) and Time Dependent DFT (TDDFT) methods and the results have been compared to those of Spiro-OMeTAD and a previously reported phenothiazine-based HTM (PTZ2). The analysis suggests that HTM1-4 fulfil the requirements that enable hole extraction and transport processes in PSCs. Therefore, they should be considered as possible alternatives to Spiro-OMeTAD for the construction of potentially efficient PSCs.
DFT and TDDFT investigation of four triphenylamine/phenothiazine-based molecules as potential novel organic hole transport materials for perovskite solar cells
Infantino R;Dessi A;Zani L;Parisi ML;Mordini A;Reginato G;Sinicropi A
2022
Abstract
Hole transport materials (HTMs) based on conductive organic molecules are crucial components to prepare highly efficient perovskite solar cells (PSCs). To overcome the limitations arising from the use of the most common Spiro-OMeTAD, hindering large-scale PSCs production, alternative HTMs are highly desirable. Therefore, several fully organic molecules mainly based on triphenylamine moieties have already been proposed. However, there is still room for the development of more efficient and easily obtainable HTMs. Within this framework, the in silico design of four novel triphenylamine/phenothiazine-based HTMs (HTM1-4) is presented here. Their electronic and molecular properties have been investigated by means of Density Functional Theory (DFT) and Time Dependent DFT (TDDFT) methods and the results have been compared to those of Spiro-OMeTAD and a previously reported phenothiazine-based HTM (PTZ2). The analysis suggests that HTM1-4 fulfil the requirements that enable hole extraction and transport processes in PSCs. Therefore, they should be considered as possible alternatives to Spiro-OMeTAD for the construction of potentially efficient PSCs.File | Dimensione | Formato | |
---|---|---|---|
prod_461902-doc_180264.pdf
solo utenti autorizzati
Descrizione: DFT and TDDFT investigation of four triphenylamine/phenothiazine-based molecules as potential novel organic hole transport materials...
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.73 MB
Formato
Adobe PDF
|
6.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Materials Chemistry and Physics_AAM.pdf
Open Access dal 18/12/2023
Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in https://doi.org/10.1016/j.matchemphys.2021.125603.”
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0254058421013869-mmc1.pdf
solo utenti autorizzati
Descrizione: supporting information
Tipologia:
Altro materiale allegato
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.