The influence of the thermomechanical effects on the optical properties of germanium microstructures is investigated. Finite element method (FEM) calculations allow a complete spatial assessment of mechanical deformations induced by a silicon nitride (SiN) stressor layer deposited on Ge micropillars. Simulated strain maps are confirmed by experimental maps obtained by Raman spectroscopy. The theoretical investigation on strain-dependent band structure, including the presence of a strain gradient along the longitudinal direction, is exploited to fully capture photoluminescence spectroscopy experiments. Finally, the joint effect of temperature and strain on the fundamental bandgap is also quantified.

Tensile Strained Germanium Microstructures: A Comprehensive Analysis of Thermo-Opto-Mechanical Properties

N Andriolli;
2021

Abstract

The influence of the thermomechanical effects on the optical properties of germanium microstructures is investigated. Finite element method (FEM) calculations allow a complete spatial assessment of mechanical deformations induced by a silicon nitride (SiN) stressor layer deposited on Ge micropillars. Simulated strain maps are confirmed by experimental maps obtained by Raman spectroscopy. The theoretical investigation on strain-dependent band structure, including the presence of a strain gradient along the longitudinal direction, is exploited to fully capture photoluminescence spectroscopy experiments. Finally, the joint effect of temperature and strain on the fundamental bandgap is also quantified.
2021
germanium
photoluminescence
Raman
semiconductor
strain
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/445805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact