We take a collection of short texts, some of which are human-written, while others are automatically generated, and ask subjects, who are unaware of the texts' source, whether they perceive them as human-produced. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, and observe that the production of this fine-tuned model is indeed perceived as more human-like than that of the original model. Contextually, we show that our automatic evaluation strategy correlates well with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language.

Human Perception in Natural Language Generation

Dell'Orletta F;
2021

Abstract

We take a collection of short texts, some of which are human-written, while others are automatically generated, and ask subjects, who are unaware of the texts' source, whether they perceive them as human-produced. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, and observe that the production of this fine-tuned model is indeed perceived as more human-like than that of the original model. Contextually, we show that our automatic evaluation strategy correlates well with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people De Mattei L it
dc.authority.people Lai H it
dc.authority.people Dell'Orletta F it
dc.authority.people Nissim M it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/19 11:10:11 -
dc.date.available 2024/02/19 11:10:11 -
dc.date.issued 2021 -
dc.description.abstracteng We take a collection of short texts, some of which are human-written, while others are automatically generated, and ask subjects, who are unaware of the texts' source, whether they perceive them as human-produced. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, and observe that the production of this fine-tuned model is indeed perceived as more human-like than that of the original model. Contextually, we show that our automatic evaluation strategy correlates well with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language. -
dc.description.affiliations Department of Computer Science, University of Pisa, Department of Computer Science, University of Pisa / Italy, , Italy; ItaliaNLP Lab, Istituto di Linguistica Computazionale "Antonio Zampolli", Pisa, ItaliaNLP Lab, Istituto di Linguistica Computazionale "Antonio Zampolli", Pisa / Italy, , Italy; CLCG, University of Groningen, CLCG, University of Groningen / The Netherlands, , Netherlands; Aptus.AI, Pisa, Aptus.AI / Pisa, Italy, , Italy -
dc.description.allpeople De Mattei L.; Lai H.; Dell'Orletta F.; Nissim M. -
dc.description.allpeopleoriginal De Mattei L.; Lai H.; Dell'Orletta F.; Nissim M. -
dc.description.fulltext none en
dc.description.numberofauthors 1 -
dc.identifier.doi 10.18653/v1/2021.gem-1.2 -
dc.identifier.isbn 978-1-954085-67-1 -
dc.identifier.scopus 2-s2.0-85123713456 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/445812 -
dc.identifier.url http://www.scopus.com/record/display.url?eid=2-s2.0-85123713456&origin=inward -
dc.language.iso eng -
dc.relation.conferencedate 05/08/2021 -
dc.relation.conferencename First Workshop on Generation Evaluation and Metrics (GEM 2021) -
dc.relation.conferenceplace Online -
dc.relation.firstpage 15 -
dc.relation.ispartofbook Proceedings of the First Workshop on Generation Evaluation and Metrics (GEM 2021) -
dc.relation.lastpage 23 -
dc.subject.keywords Natural Language Generation -
dc.subject.keywords Neural Language Models -
dc.subject.keywords Evaluation -
dc.subject.singlekeyword Natural Language Generation *
dc.subject.singlekeyword Neural Language Models *
dc.subject.singlekeyword Evaluation *
dc.title Human Perception in Natural Language Generation en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 472158 -
iris.orcid.lastModifiedDate 2024/03/17 09:19:41 *
iris.orcid.lastModifiedMillisecond 1710663581475 *
iris.scopus.extIssued 2021 -
iris.scopus.extTitle Human Perception in Natural Language Generation -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.bestoahost publisher *
iris.unpaywall.bestoaversion publishedVersion *
iris.unpaywall.doi 10.18653/v1/2021.gem-1.2 *
iris.unpaywall.hosttype publisher *
iris.unpaywall.isoa true *
iris.unpaywall.landingpage https://doi.org/10.18653/v1/2021.gem-1.2 *
iris.unpaywall.license cc-by *
iris.unpaywall.metadataCallLastModified 01/07/2025 05:13:10 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1751339590153 -
iris.unpaywall.oastatus hybrid *
iris.unpaywall.pdfurl https://aclanthology.org/2021.gem-1.2.pdf *
scopus.category 1710 *
scopus.category 1706 *
scopus.category 1703 *
scopus.contributor.affiliation Aptus.AI -
scopus.contributor.affiliation University of Groningen -
scopus.contributor.affiliation Istituto di Linguistica Computazionale “Antonio Zampolli” -
scopus.contributor.affiliation University of Groningen -
scopus.contributor.afid 125281904 -
scopus.contributor.afid 60010023 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60010023 -
scopus.contributor.auid 57204921228 -
scopus.contributor.auid 57222015938 -
scopus.contributor.auid 57540567000 -
scopus.contributor.auid 8281949100 -
scopus.contributor.country Italy -
scopus.contributor.country Netherlands -
scopus.contributor.country Italy -
scopus.contributor.country Netherlands -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.dptid 114087935 -
scopus.contributor.dptid -
scopus.contributor.name Lorenzo -
scopus.contributor.name Huiyuan -
scopus.contributor.name Felice -
scopus.contributor.name Malvina -
scopus.contributor.subaffiliation -
scopus.contributor.subaffiliation CLCG; -
scopus.contributor.subaffiliation ItaliaNLP Lab; -
scopus.contributor.subaffiliation CLCG; -
scopus.contributor.surname De Mattei -
scopus.contributor.surname Lai -
scopus.contributor.surname Dell’Orletta -
scopus.contributor.surname Nissim -
scopus.date.issued 2021 *
scopus.description.abstracteng We take a collection of short texts, some of which are human-written, while others are automatically generated, and ask subjects, who are unaware of the texts’ source, whether they perceive them as human-produced. We use this data to fine-tune a GPT-2 model to push it to generate more human-like texts, and observe that the production of this fine-tuned model is indeed perceived as more human-like than that of the original model. Contextually, we show that our automatic evaluation strategy correlates well with human judgements. We also run a linguistic analysis to unveil the characteristics of human- vs machine-perceived language. *
scopus.description.allpeopleoriginal De Mattei L.; Lai H.; Dell'Orletta F.; Nissim M. *
scopus.differences scopus.relation.conferencename *
scopus.differences scopus.publisher.name *
scopus.differences scopus.relation.conferencedate *
scopus.differences scopus.identifier.isbn *
scopus.differences scopus.description.abstracteng *
scopus.differences scopus.relation.conferenceplace *
scopus.document.type cp *
scopus.document.types cp *
scopus.identifier.isbn 9781954085671 *
scopus.identifier.pui 637101245 *
scopus.identifier.scopus 2-s2.0-85123713456 *
scopus.journal.sourceid 21101074571 *
scopus.language.iso eng *
scopus.publisher.name Association for Computational Linguistics (ACL) *
scopus.relation.conferencedate 2021 *
scopus.relation.conferencename 1st Workshop on Natural Language Generation, Evaluation, and Metrics, GEM 2021 *
scopus.relation.conferenceplace tha *
scopus.relation.firstpage 15 *
scopus.relation.lastpage 23 *
scopus.title Human Perception in Natural Language Generation *
scopus.titleeng Human Perception in Natural Language Generation *
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/445812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact