We propose to use ultrahigh intensity laser pulses with wave-front rotation (WFR) to produce short, ultraintense surface plasma waves (SPW) on grating targets for electron acceleration. Combining a smart grating design with optimal WFR conditions identified through simple analytical modeling and particle-in-cell simulation allows us to decrease the SPW duration (down to a few optical cycles) and increase its peak amplitude. In the relativistic regime, for I?02=3.4×1019W/cm2?m2, such SPW are found to accelerate high charge (few 10 s of pC), high energy (up to 70 MeV), and ultrashort (few fs) electron bunches.

Ultrashort high energy electron bunches from tunable surface plasma waves driven with laser wavefront rotation

Macchi A;
2021

Abstract

We propose to use ultrahigh intensity laser pulses with wave-front rotation (WFR) to produce short, ultraintense surface plasma waves (SPW) on grating targets for electron acceleration. Combining a smart grating design with optimal WFR conditions identified through simple analytical modeling and particle-in-cell simulation allows us to decrease the SPW duration (down to a few optical cycles) and increase its peak amplitude. In the relativistic regime, for I?02=3.4×1019W/cm2?m2, such SPW are found to accelerate high charge (few 10 s of pC), high energy (up to 70 MeV), and ultrashort (few fs) electron bunches.
2021
Istituto Nazionale di Ottica - INO
electron sources
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/445820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact