The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to ~10 keV) were observed as far as ~50RV downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5RV upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 RV. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to ~30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.

Energetic ions in the Venusian system: Insights from the first Solar Orbiter flyby

SorrisoValvo L;
2021

Abstract

The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to ~10 keV) were observed as far as ~50RV downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5RV upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 RV. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to ~30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.
2021
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
acceleration of particles
planets and satellites: terrestrial planets
planet-star interactions
planetary systems
turbulence
waves
File in questo prodotto:
File Dimensione Formato  
prod_462548-doc_180791.pdf

accesso aperto

Descrizione: Energetic ions in the Venusian system: Insights from the first Solar Orbiter flyby
Tipologia: Versione Editoriale (PDF)
Dimensione 27.09 MB
Formato Adobe PDF
27.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact