We address distributed machine learning in multi-tier (e.g., mobile-edge-cloud) networks where a heterogeneous set of nodes cooperate to perform a learning task. Due to the presence of multiple data sources and computation-capable nodes, a learning controller (e.g., located in the edge) has to make decisions about (i) which distributed ML model structure to select, (ii) which data should be used for the ML model training, and (iii) which resources should be allocated to it. Since these decisions deeply influence one another, they should be made jointly. In this paper, we envision a new approach to distributed learning in multi-tier networks, which aims at maximizing ML efficiency. To this end, we propose a solution concept, called RightTrain, that achieves energy-efficient ML model training, while fulfilling learning time and quality requirements. RightTrain makes high-quality decisions in polynomial time. Further, our performance evaluation shows that RightTrain closely matches the optimum and outperforms the state of the art by over 50%.

Energy-efficient Training of Distributed DNNs in the Mobile-edge-cloud Continuum

Francesco Malandrino;Carla Fabiana Chiasserini;
2022

Abstract

We address distributed machine learning in multi-tier (e.g., mobile-edge-cloud) networks where a heterogeneous set of nodes cooperate to perform a learning task. Due to the presence of multiple data sources and computation-capable nodes, a learning controller (e.g., located in the edge) has to make decisions about (i) which distributed ML model structure to select, (ii) which data should be used for the ML model training, and (iii) which resources should be allocated to it. Since these decisions deeply influence one another, they should be made jointly. In this paper, we envision a new approach to distributed learning in multi-tier networks, which aims at maximizing ML efficiency. To this end, we propose a solution concept, called RightTrain, that achieves energy-efficient ML model training, while fulfilling learning time and quality requirements. RightTrain makes high-quality decisions in polynomial time. Further, our performance evaluation shows that RightTrain closely matches the optimum and outperforms the state of the art by over 50%.
2022
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
DNN; Artificial Intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact