This review paper deals with four aspects of precipitation: measurement, remote sensing, climatology and modeling. The measurement of precipitation is summarized in terms of the instruments that count and measure drop sizes (defined as disdrometers) and the instruments that measure an average quantity proportional to the integrated volume of an ensemble of raindrops (these instruments are normally called rain gauges). Remote sensing of precipitation is accomplished with ground based radar and from satellite retrievals and these two approaches are separately discussed. The climatology of precipitation has evolved through the years from the traditional rain gauge data analyses to the more sophisticated data bases that result from a coalescence of data and information on precipitation that is available from several sources into amalgamated products. Recently, rain observations from both ground and space have been assimilated into regional and global numerical weather prediction models aiming at improved moisture analysis and better forecasts of extreme weather events. The current status and the main outstanding issues related to precipitation forecasting are discussed, providing a basic structure for research coordination aimed at the improvement of modeling, observation and data assimilation applicable to global and regional scales.

This review paper deals with four aspects of precipitation: measurement, remote sensing, climatology and modeling. The measurement of precipitation is summarized in terms of the instruments that count and measure drop sizes (defined as disdrometers) and the instruments that measure an average quantity proportional to the integrated volume of an ensemble of raindrops (these instruments are normally called rain gauges). Remote sensing of precipitation is accomplished with ground based radar and from satellite retrievals and these two approaches are separately discussed. The climatology of precipitation has evolved through the years from the traditional rain gauge data analyses to the more sophisticated data bases that result from a coalescence of data and information on precipitation that is available from several sources into amalgamated products. Recently, rain observations from both ground and space have been assimilated into regional and global numerical weather prediction models aiming at improved moisture analysis and better forecasts of extreme weather events. The current status and the main outstanding issues related to precipitation forecasting are discussed, providing a basic structure for research coordination aimed at the improvement of modeling, observation and data assimilation applicable to global and regional scales.

Precipitation: measurement, remote sensing, climatology and modeling

2009

Abstract

This review paper deals with four aspects of precipitation: measurement, remote sensing, climatology and modeling. The measurement of precipitation is summarized in terms of the instruments that count and measure drop sizes (defined as disdrometers) and the instruments that measure an average quantity proportional to the integrated volume of an ensemble of raindrops (these instruments are normally called rain gauges). Remote sensing of precipitation is accomplished with ground based radar and from satellite retrievals and these two approaches are separately discussed. The climatology of precipitation has evolved through the years from the traditional rain gauge data analyses to the more sophisticated data bases that result from a coalescence of data and information on precipitation that is available from several sources into amalgamated products. Recently, rain observations from both ground and space have been assimilated into regional and global numerical weather prediction models aiming at improved moisture analysis and better forecasts of extreme weather events. The current status and the main outstanding issues related to precipitation forecasting are discussed, providing a basic structure for research coordination aimed at the improvement of modeling, observation and data assimilation applicable to global and regional scales.
2009
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Dipartimento di Scienze del Sistema Terra e Tecnologie per l'Ambiente - DSSTTA
This review paper deals with four aspects of precipitation: measurement, remote sensing, climatology and modeling. The measurement of precipitation is summarized in terms of the instruments that count and measure drop sizes (defined as disdrometers) and the instruments that measure an average quantity proportional to the integrated volume of an ensemble of raindrops (these instruments are normally called rain gauges). Remote sensing of precipitation is accomplished with ground based radar and from satellite retrievals and these two approaches are separately discussed. The climatology of precipitation has evolved through the years from the traditional rain gauge data analyses to the more sophisticated data bases that result from a coalescence of data and information on precipitation that is available from several sources into amalgamated products. Recently, rain observations from both ground and space have been assimilated into regional and global numerical weather prediction models aiming at improved moisture analysis and better forecasts of extreme weather events. The current status and the main outstanding issues related to precipitation forecasting are discussed, providing a basic structure for research coordination aimed at the improvement of modeling, observation and data assimilation applicable to global and regional scales.
clouds
precipitation measurement
remote sensing
data assimilation
climatology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/44632
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 317
social impact