In this work, we investigated the deposition of thermal spray coatings onto additively manufactured parts obtained by Selective Laser Melting (SLM). SLM is indeed replacing conventional subtractive machining to produce diverse industrial parts; hence, it will become increasingly frequent to apply thermal spray coatings onto SLM surfaces. Whilst grit-blasting is the most widely accepted process to prepare a conventionally machined part for a thermal spray coating, the unique surface texture of SLM surfaces might open new possibilities. As a case study, we chose High Velocity Oxygen-Fuel (HVOF) spraying of WC-10%Co4%Cr onto AISI 316 L SLM surfaces in three different conditions: "as built", pickled, or grit-blasted. We also examined SLM surfaces grown along different directions: parallel, perpendicular, or inclined with respect to the build platform. The references were a machined and grit-blasted SLM part, and a grit-blasted stainless steel bulk. Dense coatings were obtained on every surface regardless of its roughness and pre-treatment. Electrochemical corrosion testing confirmed the low porosity of the layers. Tensile adhesion/cohesion strength was >70 MPa on both SLM and reference surfaces, but the presence of an oxide scale on as-built surfaces degraded the adhesion strength to some extent. Although TEM analysis showed occasional evidence of diffusion bonding between the coating and the oxide scale, cyclic impact tests revealed that the scale itself broke. Particularly strong adhesion was achieved with pickled surfaces; indeed, failure was only cohesive (i.e. within the coating) in both tensile and impact tests. In addition to mechanical interlocking to the rough surface profile, TEM showed widespread diffusion bonding to the clean metal. An SLM part might therefore need chemical activation but no subtractive machining before application of a thermal spray coating. The coating also exerts a levelling action toward the SLM surface, i.e. the coated surface is smoother than the as built one.

Pre-treatment of Selective Laser Melting (SLM) surfaces for thermal spray coating

Gazzadi GC;Frabboni S;
2022

Abstract

In this work, we investigated the deposition of thermal spray coatings onto additively manufactured parts obtained by Selective Laser Melting (SLM). SLM is indeed replacing conventional subtractive machining to produce diverse industrial parts; hence, it will become increasingly frequent to apply thermal spray coatings onto SLM surfaces. Whilst grit-blasting is the most widely accepted process to prepare a conventionally machined part for a thermal spray coating, the unique surface texture of SLM surfaces might open new possibilities. As a case study, we chose High Velocity Oxygen-Fuel (HVOF) spraying of WC-10%Co4%Cr onto AISI 316 L SLM surfaces in three different conditions: "as built", pickled, or grit-blasted. We also examined SLM surfaces grown along different directions: parallel, perpendicular, or inclined with respect to the build platform. The references were a machined and grit-blasted SLM part, and a grit-blasted stainless steel bulk. Dense coatings were obtained on every surface regardless of its roughness and pre-treatment. Electrochemical corrosion testing confirmed the low porosity of the layers. Tensile adhesion/cohesion strength was >70 MPa on both SLM and reference surfaces, but the presence of an oxide scale on as-built surfaces degraded the adhesion strength to some extent. Although TEM analysis showed occasional evidence of diffusion bonding between the coating and the oxide scale, cyclic impact tests revealed that the scale itself broke. Particularly strong adhesion was achieved with pickled surfaces; indeed, failure was only cohesive (i.e. within the coating) in both tensile and impact tests. In addition to mechanical interlocking to the rough surface profile, TEM showed widespread diffusion bonding to the clean metal. An SLM part might therefore need chemical activation but no subtractive machining before application of a thermal spray coating. The coating also exerts a levelling action toward the SLM surface, i.e. the coated surface is smoother than the as built one.
2022
Istituto Nanoscienze - NANO
Istituto Nanoscienze - NANO - Sede Secondaria Modena
Cyclic impact, Electrochemical polarization, High Velocity Oxygen-Fuel (HVOF), Roughness, Selective Laser Melting, Tensile adhesion
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0257897222004546-main_compressed.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact