Groundwater is the main water supply for agricultural and industrial needs in many coastal plains worldwide. Groundwater depletion often triggers land subsidence, which threatens manmade infrastructure and activities and aggravates other geohazards. We applied a multi-temporal interferometric synthetic aperture radar technique to Sentinel-1 datasets to detect ground motion in the Gioia Tauro plain (Calabria, Southern Italy) from 2018 to 2021. The InSAR data were analysed through the integrated use of groundwater head, stratigraphical and geomorphological data, and land use information to distinguish the potential subsidence divers. The results show that subsiding areas, with a mean rate of about 10 mm/yr, are in the middle of the plain, and their location is influenced by the spatial distribution of compressible sediments included in the shallow aquifer. Furthermore, the subsidence arrangement is spatially accordant with the main groundwater depression area, which can be ascribed to the ongoing and increasing water pumping for predominantly agricultural usage. We also observed that subsidence (up to 10 mm/yr) affects the western dock of the Gioia Tauro harbour, in front of which, in very shallow water, are two submarine canyon heads already affected by slides in the past.

Different Ground Subsidence Contributions Revealed by Integrated Discussion of Sentinel-1 Datasets, Well Discharge, Stratigraphical and Geomorphological Data: The Case of the Gioia Tauro Coastal Plain (Southern Italy)

Polemio Maurizio
2022

Abstract

Groundwater is the main water supply for agricultural and industrial needs in many coastal plains worldwide. Groundwater depletion often triggers land subsidence, which threatens manmade infrastructure and activities and aggravates other geohazards. We applied a multi-temporal interferometric synthetic aperture radar technique to Sentinel-1 datasets to detect ground motion in the Gioia Tauro plain (Calabria, Southern Italy) from 2018 to 2021. The InSAR data were analysed through the integrated use of groundwater head, stratigraphical and geomorphological data, and land use information to distinguish the potential subsidence divers. The results show that subsiding areas, with a mean rate of about 10 mm/yr, are in the middle of the plain, and their location is influenced by the spatial distribution of compressible sediments included in the shallow aquifer. Furthermore, the subsidence arrangement is spatially accordant with the main groundwater depression area, which can be ascribed to the ongoing and increasing water pumping for predominantly agricultural usage. We also observed that subsidence (up to 10 mm/yr) affects the western dock of the Gioia Tauro harbour, in front of which, in very shallow water, are two submarine canyon heads already affected by slides in the past.
2022
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
Gioia Tauro plain
subsidence
InSAR
groundwater exploitation
land use change
File in questo prodotto:
File Dimensione Formato  
prod_466199-doc_183249.pdf

accesso aperto

Descrizione: articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 10.79 MB
Formato Adobe PDF
10.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact