Generally adopted strategies for enhancing the photocatalytic activity are aimed at tuning the visible light response, the exposed crystal facets, and the nanocrystal shape. Here, we present a different approach for designing efficient photocatalysts displaying a substrate-specific reactivity upon defect engineering. The platinized, defective anisotropic brookite TiO 2 photocatalysts are tested for alcohol photoreforming showing up to an 11-fold increase in methanol oxidation rate, compared with the pristine one, while presenting much lower ethanol or isopropanol specific oxidation rates. We demonstrate that the substrate-specific alcohol oxidation and hydrogen evolution reactions are tightly related, and when the former is increased, the latter is boosted. The reduced anisotropic brookite shows up to 18-fold higher specific photoactivity with respect to anatase and brookite with isotropic nanocrystals. Advanced in situ characterizations and theoretical investigations reveal that controlled engineering over oxygen vacancies and lattice strain produces large electron polarons hosting the substrate-specific active sites for alcohol photo-oxidation.

Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols

Polina M. Sheverdyaeva;Paolo Moras;Paolo Fornasiero
2022

Abstract

Generally adopted strategies for enhancing the photocatalytic activity are aimed at tuning the visible light response, the exposed crystal facets, and the nanocrystal shape. Here, we present a different approach for designing efficient photocatalysts displaying a substrate-specific reactivity upon defect engineering. The platinized, defective anisotropic brookite TiO 2 photocatalysts are tested for alcohol photoreforming showing up to an 11-fold increase in methanol oxidation rate, compared with the pristine one, while presenting much lower ethanol or isopropanol specific oxidation rates. We demonstrate that the substrate-specific alcohol oxidation and hydrogen evolution reactions are tightly related, and when the former is increased, the latter is boosted. The reduced anisotropic brookite shows up to 18-fold higher specific photoactivity with respect to anatase and brookite with isotropic nanocrystals. Advanced in situ characterizations and theoretical investigations reveal that controlled engineering over oxygen vacancies and lattice strain produces large electron polarons hosting the substrate-specific active sites for alcohol photo-oxidation.
2022
Istituto di Struttura della Materia - ISM - Sede Secondaria Trieste
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
alcohol photo-oxidation; TiO2 brookite nanorods; photocatalytic hydrogen evolution; atomic sites
File in questo prodotto:
File Dimensione Formato  
prod_466308-doc_184060.pdf

accesso aperto

Descrizione: Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact