Organisms belonging to all life kingdoms may have the natural capacity to fluoresce. Autofluorescence events depend on the presence of natural biomolecules, namely endogenous fluorophores, with suitable chemical properties in terms of conjugated double bonds, aromatic or more complex structures with oxidized and crosslinked bonds, ensuring an energy status able to permit electronic transitions matching with the energy of light in the UV-visible-near-IR spectral range. Emission of light from biological substrates has been reported since a long time, inspiring unceasing and countless studies. Early notes on autofluorescence of vegetables have been soon followed by attention to animals. Investigations on full living organisms from the wild environment have been driven prevalently by ecological and taxonomical purposes, while studies on cells, tissues and organs have been mainly promoted by diagnostic aims. Interest in autofluorescence is also growing as a sensing biomarker in food production and in more various industrial processes. The associated technological advances have supported investigations ranging from the pure photochemical characterization of specific endogenous fluorophores to their possible functional meanings and biological relevance, making fluorescence a valuable intrinsic biomarker for industrial and diagnostic applications, in a sort of real time, in situ biochemical analysis. This review aims to provide a wide-ranging report on the most investigated natural fluorescing biomolecules, from microorganisms to plants and animals of different taxonomic degrees, with their biological, environmental or biomedical issues relevant for the human health. Hence, some notes in the different sections dealing with different biological subject are also interlaced with human related issues. Light based events in biological subjects have inspired an almost countless literature, making it almost impossible to recall here all associated published works, forcing to apologize for the overlooked reports. This Review is thus proposed as an inspiring source for Readers, addressing them to additional literature for an expanded information on specific topics of more interest.
Light and Autofluorescence, Multitasking Features in Living Organisms
Anna Cleta Croce
2021
Abstract
Organisms belonging to all life kingdoms may have the natural capacity to fluoresce. Autofluorescence events depend on the presence of natural biomolecules, namely endogenous fluorophores, with suitable chemical properties in terms of conjugated double bonds, aromatic or more complex structures with oxidized and crosslinked bonds, ensuring an energy status able to permit electronic transitions matching with the energy of light in the UV-visible-near-IR spectral range. Emission of light from biological substrates has been reported since a long time, inspiring unceasing and countless studies. Early notes on autofluorescence of vegetables have been soon followed by attention to animals. Investigations on full living organisms from the wild environment have been driven prevalently by ecological and taxonomical purposes, while studies on cells, tissues and organs have been mainly promoted by diagnostic aims. Interest in autofluorescence is also growing as a sensing biomarker in food production and in more various industrial processes. The associated technological advances have supported investigations ranging from the pure photochemical characterization of specific endogenous fluorophores to their possible functional meanings and biological relevance, making fluorescence a valuable intrinsic biomarker for industrial and diagnostic applications, in a sort of real time, in situ biochemical analysis. This review aims to provide a wide-ranging report on the most investigated natural fluorescing biomolecules, from microorganisms to plants and animals of different taxonomic degrees, with their biological, environmental or biomedical issues relevant for the human health. Hence, some notes in the different sections dealing with different biological subject are also interlaced with human related issues. Light based events in biological subjects have inspired an almost countless literature, making it almost impossible to recall here all associated published works, forcing to apologize for the overlooked reports. This Review is thus proposed as an inspiring source for Readers, addressing them to additional literature for an expanded information on specific topics of more interest.File | Dimensione | Formato | |
---|---|---|---|
20 photochem 2021c.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.