A new, innovative approach in the search for an effective and cheap carbon dioxide sorbent, in line with the circular economy and sustainable development principles, directs the attention of researchers to various types of waste ashes generated as a result of biomass combustion. In addition to the use of environmentally safe materials that have been experimentally identified, and that, in some way, have adjustable sorption capacity, it is also possible to rationally develop a widely applicable, simple, and inexpensive technology based on large amounts of this type of post-industrial waste, which is also an equally important issue for the natural environment (reducing the need for ash storage and accumulation). Even the lower sorption capacity can be successfully compensated for by their common availability and very low cost. Thus, the CO adsorption capability of the ashes from the combustion of straw biomass was experimentally investigated with the use of a high-pressure adsorption stand. The presented original technological concept has been positively verified on a laboratory scale, thus a functionalization-based approach to the combustion of substrate mixtures with nano-structural additives (raw, dried, calcined halloysite, kaolinite), introduced to improve the performance of straw biomass combustion and bottom ash formation in power boilers, clearly increased the CO adsorption capacity of the modified ashes. This allows for an advantageous synergy effect in the extra side-production of useful adsorbents in the closed-loop "cascade" scheme of the CE process. The addition of 4 wt.% kaolinite to straw biomass caused an over 2.5-fold increase in the CO adsorption capacity in relation to ash from the combustion of pure straw biomass (with a CO adsorption capacity of 0.132 mmol/g). In the case of addition of 4 wt.% nano-structured species to the straw combustion process, the best effects (ash adsorption capacity) were obtained in the following order: kaolinite (0.321 mmol/g), raw halloysite (0.310 mmol/g), calcined halloysite (0.298 mmol/g), and dried halloysite (0.288 mmol/g). Increasing the dose (in relation to all four tested substances) of the straw biomass additive from 2 to 4 wt.%, not only increase the adsorption capacity of the obtained ash, thus enriched with nano-structural additives, but also a showed a significant reduction in the differences between the maximum adsorption capacity of each ash is observed. The experimental results were analyzed using five models of adsorption isotherms: Freundlich, Langmuir, Jovanovi?, Temkin, and Hill. Moreover, selected samples of each ash were subjected to porosimetry tests and identification of the surface morphology (SEM). The obtained results can be used in the design of PSA processes or as permanent CO adsorbents, based on the environmentally beneficial option of using ashes from biomass combustion with appropriately selected additives.

Adsorption of CO2 on In Situ Functionalized Straw Burning Ashes. An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission

Miccio F;
2022

Abstract

A new, innovative approach in the search for an effective and cheap carbon dioxide sorbent, in line with the circular economy and sustainable development principles, directs the attention of researchers to various types of waste ashes generated as a result of biomass combustion. In addition to the use of environmentally safe materials that have been experimentally identified, and that, in some way, have adjustable sorption capacity, it is also possible to rationally develop a widely applicable, simple, and inexpensive technology based on large amounts of this type of post-industrial waste, which is also an equally important issue for the natural environment (reducing the need for ash storage and accumulation). Even the lower sorption capacity can be successfully compensated for by their common availability and very low cost. Thus, the CO adsorption capability of the ashes from the combustion of straw biomass was experimentally investigated with the use of a high-pressure adsorption stand. The presented original technological concept has been positively verified on a laboratory scale, thus a functionalization-based approach to the combustion of substrate mixtures with nano-structural additives (raw, dried, calcined halloysite, kaolinite), introduced to improve the performance of straw biomass combustion and bottom ash formation in power boilers, clearly increased the CO adsorption capacity of the modified ashes. This allows for an advantageous synergy effect in the extra side-production of useful adsorbents in the closed-loop "cascade" scheme of the CE process. The addition of 4 wt.% kaolinite to straw biomass caused an over 2.5-fold increase in the CO adsorption capacity in relation to ash from the combustion of pure straw biomass (with a CO adsorption capacity of 0.132 mmol/g). In the case of addition of 4 wt.% nano-structured species to the straw combustion process, the best effects (ash adsorption capacity) were obtained in the following order: kaolinite (0.321 mmol/g), raw halloysite (0.310 mmol/g), calcined halloysite (0.298 mmol/g), and dried halloysite (0.288 mmol/g). Increasing the dose (in relation to all four tested substances) of the straw biomass additive from 2 to 4 wt.%, not only increase the adsorption capacity of the obtained ash, thus enriched with nano-structural additives, but also a showed a significant reduction in the differences between the maximum adsorption capacity of each ash is observed. The experimental results were analyzed using five models of adsorption isotherms: Freundlich, Langmuir, Jovanovi?, Temkin, and Hill. Moreover, selected samples of each ash were subjected to porosimetry tests and identification of the surface morphology (SEM). The obtained results can be used in the design of PSA processes or as permanent CO adsorbents, based on the environmentally beneficial option of using ashes from biomass combustion with appropriately selected additives.
2022
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
CO2 capture
adsorption
biomass ashes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446706
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact