SignificanceDistributed training has long been known to lead to more robust memory formation as compared to massed training. Using the water maze, a well-established task for assessing memory in laboratory rodents, we found that distributed and massed training differentially engage the dorsolateral and dorsomedial striatum, and optogenetic priming of dorsolateral striatum can artificially increase the robustness of massed training to the level of distributed training. Overall, our findings demonstrate that spatial memory consolidation engages different neural substrates depending on the training regimen, identifying a therapeutic avenue for memory enhancement.

The neural substrate of spatial memory stabilization depends on the distribution of the training sessions

Centofante E;
2022

Abstract

SignificanceDistributed training has long been known to lead to more robust memory formation as compared to massed training. Using the water maze, a well-established task for assessing memory in laboratory rodents, we found that distributed and massed training differentially engage the dorsolateral and dorsomedial striatum, and optogenetic priming of dorsolateral striatum can artificially increase the robustness of massed training to the level of distributed training. Overall, our findings demonstrate that spatial memory consolidation engages different neural substrates depending on the training regimen, identifying a therapeutic avenue for memory enhancement.
2022
Istituto di Biofisica - IBF
striatum; spatial memory; memory systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact