Cloud computing facilities can provide crucial computing support for processing the time series of satellite data and exploiting their spatio-temporal information content. However, dedicated efforts are still required to develop workflows, executable on cloud-based platforms, for ingesting the satellite data, performing the targeted processes, and generating the desired products. In this study, an operational workflow is proposed, based on monthly Evaporative Stress Index (ESI) anomaly, and implemented in cloud-based online Virtual Earth Laboratory (VLab) platform, as a demonstration, to monitor European agricultural water stress. To this end, daily time-series of actual and reference evapotranspiration (ETa and ET0), from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor, were used to execute the proposed workflow successfully on VLab. The execution of the workflow resulted in obtaining one decade (2011-2020) of European monthly agricultural water stress maps at 0.04 spatial resolution and corresponding stress reports for each country. To support open science, all the workflow outputs are stored in GeoServer, documented in GeoNetwork, and made available through MapStore. This enables creating a dashboard for better visualization of the results for end-users. The results from this study demonstrate the capability of VLab platform for water stress detection from time series of SEVIRI-ET data.

One decade (2011-2020) of European agricultural water stress monitoring by MSG-SEVIRI: workflow implementation on the Virtual Earth Laboratory (VLab) platform

Santoro Mattia;
2022

Abstract

Cloud computing facilities can provide crucial computing support for processing the time series of satellite data and exploiting their spatio-temporal information content. However, dedicated efforts are still required to develop workflows, executable on cloud-based platforms, for ingesting the satellite data, performing the targeted processes, and generating the desired products. In this study, an operational workflow is proposed, based on monthly Evaporative Stress Index (ESI) anomaly, and implemented in cloud-based online Virtual Earth Laboratory (VLab) platform, as a demonstration, to monitor European agricultural water stress. To this end, daily time-series of actual and reference evapotranspiration (ETa and ET0), from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor, were used to execute the proposed workflow successfully on VLab. The execution of the workflow resulted in obtaining one decade (2011-2020) of European monthly agricultural water stress maps at 0.04 spatial resolution and corresponding stress reports for each country. To support open science, all the workflow outputs are stored in GeoServer, documented in GeoNetwork, and made available through MapStore. This enables creating a dashboard for better visualization of the results for end-users. The results from this study demonstrate the capability of VLab platform for water stress detection from time series of SEVIRI-ET data.
2022
Istituto sull'Inquinamento Atmosferico - IIA
ET
SEVIRI
ESI
water stress workflow
Europe
VLab demonstration
File in questo prodotto:
File Dimensione Formato  
prod_466883-doc_183658.pdf

accesso aperto

Descrizione: published version
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.65 MB
Formato Adobe PDF
3.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact