Metal-nitrogen-carbons (M-N-Cs) as a reliable substitution for platinum-group-metals (PGMs) for oxygen reduction reaction (ORR) are emerging candidates to rationalize the technology of fuel cells. The development of M-N-Cs can further be economized by consuming waste biomass as an inexpensive carbon source for the electrocatalyst support. Herein, we report the simple fabrication and in-depth characterization of electrocatalysts using lignin-derived activated char. The activated char (LAC) was functionalized with metal phthalocyanine (FePc and MnPc) via atmosphere-controlled pyrolysis to produce monometallic M-N-Cs (L_Mn and L_Fe) and bimetallic M1-M2-N-Cs (L_FeMn) electrocatalysts. Raman spectroscopy and transmission electron microscopy (TEM) revealed a defect-rich architecture. XPS confirmed the coexistence of various nitrogen-containing active moieties. L_Fe and L_FeMn demonstrated appreciable ORR in both acidic and alkaline conditions whereas L_FeMn helped in restricting the peroxide yield, particularly in alkaline media. L_Fe and L_FeMn demonstrated remarkable onset potential (Eonset) of ~0.942 V (vs RHE) with an E1/2 of 0.874 V (vs RHE) in 0.1 M KOH. In acid, L_FeMn had an Eonset of 0.817 V (vs RHE) and an E1/2 of ~0.76 V (vs RHE). Finally, the L_FeMn as a cathode electrocatalyst was integrated and tested in PEMFC and AEMFC. AEMFC demonstrated optimistic performance with a peak power density of 261 mW cm-2 at the current density of ~577 mA cm-2
Lignin-derived bimetallic platinum group metal-free oxygen reduction reaction electrocatalysts for acid and alkaline fuel cells
Enrico Berretti;Marco Bellini;Alessandro Lavacchi;
2023
Abstract
Metal-nitrogen-carbons (M-N-Cs) as a reliable substitution for platinum-group-metals (PGMs) for oxygen reduction reaction (ORR) are emerging candidates to rationalize the technology of fuel cells. The development of M-N-Cs can further be economized by consuming waste biomass as an inexpensive carbon source for the electrocatalyst support. Herein, we report the simple fabrication and in-depth characterization of electrocatalysts using lignin-derived activated char. The activated char (LAC) was functionalized with metal phthalocyanine (FePc and MnPc) via atmosphere-controlled pyrolysis to produce monometallic M-N-Cs (L_Mn and L_Fe) and bimetallic M1-M2-N-Cs (L_FeMn) electrocatalysts. Raman spectroscopy and transmission electron microscopy (TEM) revealed a defect-rich architecture. XPS confirmed the coexistence of various nitrogen-containing active moieties. L_Fe and L_FeMn demonstrated appreciable ORR in both acidic and alkaline conditions whereas L_FeMn helped in restricting the peroxide yield, particularly in alkaline media. L_Fe and L_FeMn demonstrated remarkable onset potential (Eonset) of ~0.942 V (vs RHE) with an E1/2 of 0.874 V (vs RHE) in 0.1 M KOH. In acid, L_FeMn had an Eonset of 0.817 V (vs RHE) and an E1/2 of ~0.76 V (vs RHE). Finally, the L_FeMn as a cathode electrocatalyst was integrated and tested in PEMFC and AEMFC. AEMFC demonstrated optimistic performance with a peak power density of 261 mW cm-2 at the current density of ~577 mA cm-2File | Dimensione | Formato | |
---|---|---|---|
prod_474531-doc_193599.pdf
solo utenti autorizzati
Descrizione: Lignin-derived bimetallic platinum group metal-free oxygen reduction reaction electrocatalysts ...
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.22 MB
Formato
Adobe PDF
|
6.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
POWER-D-22-04366R1.pdf
Open Access dal 25/11/2024
Descrizione: corrected proofs disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.