I present two related commands, r_ml_stata_cv and c_ml_stata_cv, for fitting popular machine learning methods in both a regression and a classification setting. Using the recent Stata/Python integration platform introduced in Stata 16, these commands provide hyperparameters? optimal tuning via K-fold cross-validation using grid search. More specifically, they use the Python Scikitlearn application programming interface to carry out both cross-validation and outcome/label prediction.

Machine learning using Stata/Python

Cerulli Giovanni
Methodology
2022

Abstract

I present two related commands, r_ml_stata_cv and c_ml_stata_cv, for fitting popular machine learning methods in both a regression and a classification setting. Using the recent Stata/Python integration platform introduced in Stata 16, these commands provide hyperparameters? optimal tuning via K-fold cross-validation using grid search. More specifically, they use the Python Scikitlearn application programming interface to carry out both cross-validation and outcome/label prediction.
2022
Istituto di Ricerca sulla Crescita Economica Sostenibile - IRCrES
Machine learning
Stata
Python
File in questo prodotto:
File Dimensione Formato  
cerulli-2023-machine-learning-using-stata-python.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 13.29 MB
Formato Adobe PDF
13.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact