I present two related commands, r_ml_stata_cv and c_ml_stata_cv, for fitting popular machine learning methods in both a regression and a classification setting. Using the recent Stata/Python integration platform introduced in Stata 16, these commands provide hyperparameters? optimal tuning via K-fold cross-validation using grid search. More specifically, they use the Python Scikitlearn application programming interface to carry out both cross-validation and outcome/label prediction.
Machine learning using Stata/Python
Cerulli Giovanni
Methodology
2022
Abstract
I present two related commands, r_ml_stata_cv and c_ml_stata_cv, for fitting popular machine learning methods in both a regression and a classification setting. Using the recent Stata/Python integration platform introduced in Stata 16, these commands provide hyperparameters? optimal tuning via K-fold cross-validation using grid search. More specifically, they use the Python Scikitlearn application programming interface to carry out both cross-validation and outcome/label prediction.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
cerulli-2023-machine-learning-using-stata-python.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
13.29 MB
Formato
Adobe PDF
|
13.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.