We investigate the problem of separating cover inequalities of maximum-depth exactly. We propose a pseudopolynomial-time dynamic-programming algorithm for its solution, thanks to which we show that this problem is weakly NP-hard (similarly to the problem of separating cover inequalities of maximum violation). We carry out extensive computational experiments on instances of the knapsack and the multi-dimensional knapsack problems with and without conflict constraints. The results show that, with a cutting-plane generation method based on the maximum-depth criterion, we can optimize over the cover-inequality closure by generating a number of cuts smaller than when adopting the standard maximum-violation criterion. We also introduce the Point-to-Hyperplane Distance Knapsack Problem (PHD-KP), a problem closely related to the separation problem for maximum-depth cover inequalities, and show how the proposed dynamic programming algorithm can be adapted for effectively solving the PHD-KP as well.

On the exact separation of cover inequalities of maximum-depth

Furini F
2021

Abstract

We investigate the problem of separating cover inequalities of maximum-depth exactly. We propose a pseudopolynomial-time dynamic-programming algorithm for its solution, thanks to which we show that this problem is weakly NP-hard (similarly to the problem of separating cover inequalities of maximum violation). We carry out extensive computational experiments on instances of the knapsack and the multi-dimensional knapsack problems with and without conflict constraints. The results show that, with a cutting-plane generation method based on the maximum-depth criterion, we can optimize over the cover-inequality closure by generating a number of cuts smaller than when adopting the standard maximum-violation criterion. We also introduce the Point-to-Hyperplane Distance Knapsack Problem (PHD-KP), a problem closely related to the separation problem for maximum-depth cover inequalities, and show how the proposed dynamic programming algorithm can be adapted for effectively solving the PHD-KP as well.
2021
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
[object Object
[object Object
[object Object
[object Object
[object Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact