Infrared (IR) thermal vision systems provide a passive and contact-less framework to evaluate temporal signatures of people presence in indoor scenarios. However, static 2D IR thermal projection of complex 3D objects cannot provide sufficient information for large-scale and continuous people estimation tasks. This paper proposes a change-point detection algorithm that jointly fuses thermal and distance information obtained from an IR array and an ultrasonic distance sensor to detect targets, namely human subjects, inside an indoor environment. An extensive validation phase has been carried out through experimental trials that have been conducted in a smart office using ceiling-mounted devices. Unlike previous works in this area, the proposed approach eliminates time consuming calibration steps by highlighting the benefits of the IR thermal and ultrasonic sensor fusion framework.

Calibration-Free Target Detection Based on Thermal and Distance Sensor Fusion

Kianoush Sanaz;Savazzi Stefano;Rampa Vittorio;
2021

Abstract

Infrared (IR) thermal vision systems provide a passive and contact-less framework to evaluate temporal signatures of people presence in indoor scenarios. However, static 2D IR thermal projection of complex 3D objects cannot provide sufficient information for large-scale and continuous people estimation tasks. This paper proposes a change-point detection algorithm that jointly fuses thermal and distance information obtained from an IR array and an ultrasonic distance sensor to detect targets, namely human subjects, inside an indoor environment. An extensive validation phase has been carried out through experimental trials that have been conducted in a smart office using ceiling-mounted devices. Unlike previous works in this area, the proposed approach eliminates time consuming calibration steps by highlighting the benefits of the IR thermal and ultrasonic sensor fusion framework.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
978-1-7281-9501-8
Temperature sensors
Three-dimensional displays
Machine vision
Object detection
Sensor fusion
Acoustics
Motion detection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/446979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact