Low light intensity can lead to a decrease in photosynthetic capacity. However, could N-fixing species with higher leaf N contents mitigate the effects of low light? Here, we exposed seed-lings of Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Castanopsis hystrix and Betula alnoides (non-N-fixing trees) to three irradiance treatments (100%, 40%, and 10% sunlight) to investigate the effects of low irradiance on leaf structure, leaf N allocation strategy, and photosynthetic physiological parameters in the seedlings. Low irradiance decreased the leaf mass per unit area, leaf N content per unit area (Narea), maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), light compensation point, and light saturation point, and increased the N allocation pro-portion of light-harvesting components in all species. The studied tree seedlings changed their leaf structures, leaf N allocation strategy, and photosynthetic physiological parameters to adapt to low-light environments. N-fixing plants had a higher photosynthesis rate, Narea, Vcmax, and Jmax than non-N-fixing species under low irradiance and had a greater advantage in maintaining their photosynthetic rate under low-radiation conditions, such as under an understory canopy, in a forest gap, or when mixed with other species.

The effect of low irradiance on leaf nitrogen allocation and mesophyll conductance to co2 in seedlings of four tree species in subtropical China

Centritto M
2021

Abstract

Low light intensity can lead to a decrease in photosynthetic capacity. However, could N-fixing species with higher leaf N contents mitigate the effects of low light? Here, we exposed seed-lings of Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Castanopsis hystrix and Betula alnoides (non-N-fixing trees) to three irradiance treatments (100%, 40%, and 10% sunlight) to investigate the effects of low irradiance on leaf structure, leaf N allocation strategy, and photosynthetic physiological parameters in the seedlings. Low irradiance decreased the leaf mass per unit area, leaf N content per unit area (Narea), maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), light compensation point, and light saturation point, and increased the N allocation pro-portion of light-harvesting components in all species. The studied tree seedlings changed their leaf structures, leaf N allocation strategy, and photosynthetic physiological parameters to adapt to low-light environments. N-fixing plants had a higher photosynthesis rate, Narea, Vcmax, and Jmax than non-N-fixing species under low irradiance and had a greater advantage in maintaining their photosynthetic rate under low-radiation conditions, such as under an understory canopy, in a forest gap, or when mixed with other species.
2021
Istituto per la Protezione Sostenibile delle Piante - IPSP
: leaf nitrogen allocation; mesophyll conductance; photosynthetic nitrogen use efficiency; low irradiance; N-fixing tree species
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/447154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact