Four operational factors, together with high development cost, currently limit the use of ocean observatories in ecological and fisheries applications: 1) limited spatial coverage, 2) limited integration of multiple types of technologies, 3) limitations in the experimental design for in situ studies, and 4) potential unpredicted bias in monitoring outcomes due to the infrastructure's presence and functioning footprint. To address these limitations, we propose a novel concept of a standardised 'ecosystem observatory module' structure composed of a central node and three tethered satellite pods together with permanent mobile platforms. The module would be designed with a rigid spatial configuration to optimise overlap among multiple observation technologies, each providing 360 degrees coverage of a cylindrical or hemi-spherical volume around the module, including permanent stereo video cameras, acoustic imaging sonar cameras, horizontal multibeam echosounders, and a passive acoustic array. The incorporation of multiple integrated observation technologies would enable unprecedented quantification of macrofaunal composition, abundance, and density surrounding the module, as well as the ability to track the movements of individual fishes and macroinvertebrates. Such a standardised modular design would allow for the hierarchical spatial connection of observatory modules into local module clusters and larger geographic module networks providing synoptic data within and across linked ecosystems suitable for fisheries and ecosystem-level monitoring on multiple scales.
TOWARDS AN OPTIMAL DESIGN FOR ECOSYSTEM-LEVEL OCEAN OBSERVATORIES
Marini Simone;
2021
Abstract
Four operational factors, together with high development cost, currently limit the use of ocean observatories in ecological and fisheries applications: 1) limited spatial coverage, 2) limited integration of multiple types of technologies, 3) limitations in the experimental design for in situ studies, and 4) potential unpredicted bias in monitoring outcomes due to the infrastructure's presence and functioning footprint. To address these limitations, we propose a novel concept of a standardised 'ecosystem observatory module' structure composed of a central node and three tethered satellite pods together with permanent mobile platforms. The module would be designed with a rigid spatial configuration to optimise overlap among multiple observation technologies, each providing 360 degrees coverage of a cylindrical or hemi-spherical volume around the module, including permanent stereo video cameras, acoustic imaging sonar cameras, horizontal multibeam echosounders, and a passive acoustic array. The incorporation of multiple integrated observation technologies would enable unprecedented quantification of macrofaunal composition, abundance, and density surrounding the module, as well as the ability to track the movements of individual fishes and macroinvertebrates. Such a standardised modular design would allow for the hierarchical spatial connection of observatory modules into local module clusters and larger geographic module networks providing synoptic data within and across linked ecosystems suitable for fisheries and ecosystem-level monitoring on multiple scales.File | Dimensione | Formato | |
---|---|---|---|
prod_463375-doc_181518.pdf
accesso aperto
Descrizione: TOWARDS AN OPTIMAL DESIGN FOR ECOSYSTEM-LEVEL OCEAN OBSERVATORIES
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
700.98 kB
Formato
Adobe PDF
|
700.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.