Motivated by the recent outbreak of coronavirus (COVID-19), we propose a stochastic model of epidemic temporal growth and mitigation based on a time-modulated Hawkes process. The model is sufficiently rich to incorporate specific characteristics of the novel coronavirus, to capture the impact of undetected, asymptomatic and super-diffusive individuals, and especially to take into account time-varying counter-measures and detection efforts. Yet, it is simple enough to allow scalable and efficient computation of the temporal evolution of the epidemic, and exploration of what-if scenarios. Compared to traditional compartmental models, our approach allows a more faithful description of virus specific features, such as distributions for the time spent in stages, which is crucial when the time-scale of control (e.g., mobility restrictions) is comparable to the lifetime of a single infection. We apply the model to the first and second wave of COVID-19 in Italy, shedding light onto several effects related to mobility restrictions introduced by the government, and to the effectiveness of contact tracing and mass testing performed by the national health service.

A time-modulated Hawkes process to model the spread of COVID-19 and the impact of countermeasures

Torrisi GL
2021

Abstract

Motivated by the recent outbreak of coronavirus (COVID-19), we propose a stochastic model of epidemic temporal growth and mitigation based on a time-modulated Hawkes process. The model is sufficiently rich to incorporate specific characteristics of the novel coronavirus, to capture the impact of undetected, asymptomatic and super-diffusive individuals, and especially to take into account time-varying counter-measures and detection efforts. Yet, it is simple enough to allow scalable and efficient computation of the temporal evolution of the epidemic, and exploration of what-if scenarios. Compared to traditional compartmental models, our approach allows a more faithful description of virus specific features, such as distributions for the time spent in stages, which is crucial when the time-scale of control (e.g., mobility restrictions) is comparable to the lifetime of a single infection. We apply the model to the first and second wave of COVID-19 in Italy, shedding light onto several effects related to mobility restrictions introduced by the government, and to the effectiveness of contact tracing and mass testing performed by the national health service.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
Hawkes processes
COVID
File in questo prodotto:
File Dimensione Formato  
ANNREVCONTR21.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/447649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact